diff --git a/examples/cuda/sepconv_parallel.py b/examples/cuda/sepconv_parallel.py new file mode 100644 index 00000000..074200e1 --- /dev/null +++ b/examples/cuda/sepconv_parallel.py @@ -0,0 +1,88 @@ +#!/usr/bin/env python +import numpy +from kernel_tuner import tune_kernel +from collections import OrderedDict + + +def tune(): + with open("convolution.cu", "r") as f: + kernel_string = f.read() + + # setup tunable parameters + tune_params = OrderedDict() + tune_params["filter_height"] = [i for i in range(3, 19, 2)] + tune_params["filter_width"] = [i for i in range(3, 19, 2)] + tune_params["block_size_x"] = [16 * i for i in range(1, 65)] + tune_params["block_size_y"] = [2**i for i in range(6)] + tune_params["tile_size_x"] = [i for i in range(1, 11)] + tune_params["tile_size_y"] = [i for i in range(1, 11)] + + tune_params["use_padding"] = [0, 1] # toggle the insertion of padding in shared memory + tune_params["read_only"] = [0, 1] # toggle using the read-only cache + + # limit the search to only use padding when its effective, and at least 32 threads in a block + restrict = ["use_padding==0 or (block_size_x % 32 != 0)", "block_size_x*block_size_y >= 32"] + + # setup input and output dimensions + problem_size = (4096, 4096) + size = numpy.prod(problem_size) + largest_fh = max(tune_params["filter_height"]) + largest_fw = max(tune_params["filter_width"]) + input_size = (problem_size[0] + largest_fw - 1) * (problem_size[1] + largest_fh - 1) + + # create input data + output_image = numpy.zeros(size).astype(numpy.float32) + input_image = numpy.random.randn(input_size).astype(numpy.float32) + filter_weights = numpy.random.randn(largest_fh * largest_fw).astype(numpy.float32) + + # setup kernel arguments + cmem_args = {"d_filter": filter_weights} + args = [output_image, input_image, filter_weights] + + # tell the Kernel Tuner how to compute grid dimensions + grid_div_x = ["block_size_x", "tile_size_x"] + grid_div_y = ["block_size_y", "tile_size_y"] + + # start tuning separable convolution (row) + tune_params["filter_height"] = [1] + tune_params["tile_size_y"] = [1] + results_row = tune_kernel( + "convolution_kernel", + kernel_string, + problem_size, + args, + tune_params, + grid_div_y=grid_div_y, + grid_div_x=grid_div_x, + cmem_args=cmem_args, + verbose=False, + restrictions=restrict, + parallel_runner=1024, + cache="convolution_kernel_row", + ) + + # start tuning separable convolution (col) + tune_params["filter_height"] = tune_params["filter_width"][:] + tune_params["file_size_y"] = tune_params["tile_size_x"][:] + tune_params["filter_width"] = [1] + tune_params["tile_size_x"] = [1] + results_col = tune_kernel( + "convolution_kernel", + kernel_string, + problem_size, + args, + tune_params, + grid_div_y=grid_div_y, + grid_div_x=grid_div_x, + cmem_args=cmem_args, + verbose=False, + restrictions=restrict, + parallel_runner=1024, + cache="convolution_kernel_col", + ) + + return results_row, results_col + + +if __name__ == "__main__": + results_row, results_col = tune() diff --git a/examples/cuda/vector_add_parallel.py b/examples/cuda/vector_add_parallel.py new file mode 100644 index 00000000..8d35ce7c --- /dev/null +++ b/examples/cuda/vector_add_parallel.py @@ -0,0 +1,35 @@ +#!/usr/bin/env python + +import numpy +from kernel_tuner import tune_kernel + + +def tune(): + kernel_string = """ + __global__ void vector_add(float *c, float *a, float *b, int n) { + int i = (blockIdx.x * block_size_x) + threadIdx.x; + if ( i < n ) { + c[i] = a[i] + b[i]; + } + } + """ + + size = 10000000 + + a = numpy.random.randn(size).astype(numpy.float32) + b = numpy.random.randn(size).astype(numpy.float32) + c = numpy.zeros_like(b) + n = numpy.int32(size) + + args = [c, a, b, n] + + tune_params = dict() + tune_params["block_size_x"] = [32 * i for i in range(1, 33)] + + results, env = tune_kernel("vector_add", kernel_string, size, args, tune_params, parallel_workers=True) + print(env) + return results + + +if __name__ == "__main__": + tune() diff --git a/kernel_tuner/backends/cupy.py b/kernel_tuner/backends/cupy.py index 51613be7..87ba1514 100644 --- a/kernel_tuner/backends/cupy.py +++ b/kernel_tuner/backends/cupy.py @@ -73,6 +73,7 @@ def __init__(self, device=0, iterations=7, compiler_options=None, observers=None s.split(":")[0].strip(): s.split(":")[1].strip() for s in cupy_info } env["device_name"] = info_dict[f"Device {device} Name"] + env["pci_bus_id"] = info_dict[f"Device {device} PCI Bus ID"] env["cuda_version"] = cp.cuda.runtime.driverGetVersion() env["compute_capability"] = self.cc diff --git a/kernel_tuner/backends/nvcuda.py b/kernel_tuner/backends/nvcuda.py index 6729e683..c151e6a9 100644 --- a/kernel_tuner/backends/nvcuda.py +++ b/kernel_tuner/backends/nvcuda.py @@ -100,6 +100,7 @@ def __init__(self, device=0, iterations=7, compiler_options=None, observers=None cuda_error_check(err) env = dict() env["device_name"] = device_properties.name.decode() + env["pci_bus_id"] = device_properties.pciBusID env["cuda_version"] = driver.CUDA_VERSION env["compute_capability"] = self.cc env["iterations"] = self.iterations diff --git a/kernel_tuner/backends/pycuda.py b/kernel_tuner/backends/pycuda.py index c8f3e689..8f9326c2 100644 --- a/kernel_tuner/backends/pycuda.py +++ b/kernel_tuner/backends/pycuda.py @@ -139,6 +139,7 @@ def _finish_up(): # collect environment information env = dict() env["device_name"] = self.context.get_device().name() + env["pci_bus_id"] = self.context.get_device().pci_bus_id() env["cuda_version"] = ".".join([str(i) for i in drv.get_version()]) env["compute_capability"] = self.cc env["iterations"] = self.iterations diff --git a/kernel_tuner/interface.py b/kernel_tuner/interface.py index 0641eb7e..b05fd535 100644 --- a/kernel_tuner/interface.py +++ b/kernel_tuner/interface.py @@ -39,8 +39,6 @@ import kernel_tuner.util as util from kernel_tuner.file_utils import get_input_file, get_t4_metadata, get_t4_results, import_class_from_file from kernel_tuner.integration import get_objective_defaults -from kernel_tuner.runners.sequential import SequentialRunner -from kernel_tuner.runners.simulation import SimulationRunner from kernel_tuner.searchspace import Searchspace try: @@ -476,6 +474,7 @@ def __deepcopy__(self, _): ), ("metrics", ("specifies user-defined metrics, please see :ref:`metrics`.", "dict")), ("simulation_mode", ("Simulate an auto-tuning search from an existing cachefile", "bool")), + ("parallel_workers", ("Set to `True` or an integer to enable parallel tuning. If set to an integer, this will be the number of parallel workers.", "int|bool")), ("observers", ("""A list of Observers to use during tuning, please see :ref:`observers`.""", "list")), ] ) @@ -587,6 +586,7 @@ def tune_kernel( cache=None, metrics=None, simulation_mode=False, + parallel_workers=None, observers=None, objective=None, objective_higher_is_better=None, @@ -616,18 +616,23 @@ def tune_kernel( kernel_options = Options([(k, opts[k]) for k in _kernel_options.keys()]) tuning_options = Options([(k, opts[k]) for k in _tuning_options.keys()]) device_options = Options([(k, opts[k]) for k in _device_options.keys()]) - tuning_options["unique_results"] = {} # copy some values from strategy_options searchspace_construction_options = {} + max_fevals = None + time_limit = None + if strategy_options: if "max_fevals" in strategy_options: - tuning_options["max_fevals"] = strategy_options["max_fevals"] + max_fevals = strategy_options["max_fevals"] + tuning_options["max_fevals"] = max_fevals # TODO: Is this used? if "time_limit" in strategy_options: - tuning_options["time_limit"] = strategy_options["time_limit"] + time_limit = strategy_options["time_limit"] + tuning_options["time_limit"] = time_limit # TODO: Is this used? if "searchspace_construction_options" in strategy_options: searchspace_construction_options = strategy_options["searchspace_construction_options"] + # log the user inputs logging.debug("tune_kernel called") logging.debug("kernel_options: %s", util.get_config_string(kernel_options)) @@ -654,9 +659,22 @@ def tune_kernel( strategy = brute_force # select the runner for this job based on input - selected_runner = SimulationRunner if simulation_mode else SequentialRunner + # TODO: we could use the "match case" syntax when removing support for 3.9 tuning_options.simulated_time = 0 - runner = selected_runner(kernelsource, kernel_options, device_options, iterations, observers) + + if parallel_workers and simulation_mode: + raise ValueError("Enabling `parallel_workers` and `simulation_mode` together is not supported") + elif simulation_mode: + from kernel_tuner.runners.simulation import SimulationRunner + runner = SimulationRunner(kernelsource, kernel_options, device_options, iterations, observers) + elif parallel_workers: + from kernel_tuner.runners.parallel import ParallelRunner + num_workers = None if parallel_workers is True else parallel_workers + runner = ParallelRunner(kernelsource, kernel_options, device_options, tuning_options, iterations, observers, num_workers=num_workers) + else: + from kernel_tuner.runners.sequential import SequentialRunner + runner = SequentialRunner(kernelsource, kernel_options, device_options, iterations, observers) + # the user-specified function may or may not have an optional atol argument; # we normalize it so that it always accepts atol. @@ -672,33 +690,50 @@ def preprocess_cache(filepath): # process cache if cache: cache = preprocess_cache(cache) - util.process_cache(cache, kernel_options, tuning_options, runner) + tuning_options.cachefile = cache + tuning_options.cache = util.process_cache(cache, kernel_options, tuning_options, runner) else: - tuning_options.cache = {} tuning_options.cachefile = None + tuning_options.cache = {} # create search space tuning_options.restrictions_unmodified = deepcopy(restrictions) - searchspace = Searchspace(tune_params, restrictions, runner.dev.max_threads, **searchspace_construction_options) + device_info = runner.get_device_info() + searchspace = Searchspace(tune_params, restrictions, device_info.max_threads, **searchspace_construction_options) + restrictions = searchspace._modified_restrictions tuning_options.restrictions = restrictions + if verbose: print(f"Searchspace has {searchspace.size} configurations after restrictions.") # register the times and raise an exception if the budget is exceeded - if "time_limit" in tuning_options: - tuning_options["startup_time"] = perf_counter() - start_overhead_time - if tuning_options["startup_time"] > tuning_options["time_limit"]: + startup_time = perf_counter() - start_overhead_time + + if time_limit is not None: + if startup_time > time_limit: raise RuntimeError( - f"The startup time of the tuning process ({tuning_options['startup_time']} seconds) has exceeded the time limit ({tuning_options['time_limit']} seconds). " + f"The startup time of the tuning process ({startup_time} seconds) has exceeded the time limit ({time_limit} seconds). " "Please increase the time limit or decrease the size of the search space." ) - tuning_options["start_time"] = perf_counter() + + time_limit -= startup_time + + if max_fevals is None or max_fevals > searchspace.size: + logging.info(f"evaluation limit has been adjusted from {max_fevals} to {searchspace.size} (search space size)") + max_fevals = searchspace.size + + # Create the budget + tuning_options["budget"] = util.TuningBudget(time_limit, max_fevals) + # call the strategy to execute the tuning process results = strategy.tune(searchspace, runner, tuning_options) env = runner.get_environment(tuning_options) + # Shut down the runner + runner.shutdown() + # finished iterating over search space if results: # checks if results is not empty best_config = util.get_best_config(results, objective, objective_higher_is_better) diff --git a/kernel_tuner/runners/parallel.py b/kernel_tuner/runners/parallel.py new file mode 100644 index 00000000..0a8edcf8 --- /dev/null +++ b/kernel_tuner/runners/parallel.py @@ -0,0 +1,355 @@ +"""A specialized runner that tunes in parallel the parameter space.""" +from collections import deque +import logging +import socket +from time import perf_counter +from typing import List, Optional +from kernel_tuner.core import DeviceInterface +from kernel_tuner.interface import Options +from kernel_tuner.runners.runner import Runner +from kernel_tuner.util import ( + BudgetExceededConfig, + ErrorConfig, + TuningBudget, + print_config_output, + process_metrics, + store_cache, +) +from datetime import datetime, timezone + +logger = logging.getLogger(__name__) + +try: + import ray +except ImportError as e: + raise ImportError(f"unable to initialize the parallel runner: {e}") from e + + +@ray.remote(num_gpus=1) +class DeviceActor: + def __init__( + self, kernel_source, kernel_options, device_options, tuning_options, iterations, observers + ): + # detect language and create high-level device interface + self.dev = DeviceInterface( + kernel_source, iterations=iterations, observers=observers, **device_options + ) + + self.units = self.dev.units + self.quiet = device_options.quiet + self.kernel_source = kernel_source + self.warmed_up = False if self.dev.requires_warmup else True + self.kernel_options = kernel_options + self.tuning_options = tuning_options + + # move data to the GPU + self.gpu_args = self.dev.ready_argument_list(kernel_options.arguments) + + def shutdown(self): + ray.actor.exit_actor() + + def get_environment(self): + # Get the device properties + env = dict(self.dev.get_environment()) + + # Get the host name + env["host_name"] = socket.gethostname() + + # Get info about the ray instance + ctx = ray.get_runtime_context() + env["ray"] = { + "node_id": ctx.get_node_id(), + "worker_id": ctx.get_worker_id(), + "actor_id": ctx.get_actor_id(), + } + + return env + + def run(self, key, element): + # TODO: logging.debug("sequential runner started for " + self.kernel_options.kernel_name) + params = dict(element) + result = None + warmup_time = 0 + + # attempt to warmup the GPU by running the first config in the parameter space and ignoring the result + if not self.warmed_up: + warmup_time = perf_counter() + self.dev.compile_and_benchmark( + self.kernel_source, self.gpu_args, params, self.kernel_options, self.tuning_options + ) + self.warmed_up = True + warmup_time = 1e3 * (perf_counter() - warmup_time) + + result = self.dev.compile_and_benchmark( + self.kernel_source, self.gpu_args, params, self.kernel_options, self.tuning_options + ) + + params.update(result) + + params["timestamp"] = datetime.now(timezone.utc).isoformat() + params["ray_actor_id"] = ray.get_runtime_context().get_actor_id() + params["host_name"] = socket.gethostname() + + # all visited configurations are added to results to provide a trace for optimization strategies + return key, params + + +class DeviceActorState: + def __init__(self, index, actor): + self.index = index + self.actor = actor + self.running_jobs = [] + self.maximum_running_jobs = 1 + self.is_running = True + self.env = ray.get(actor.get_environment.remote()) + + def __repr__(self): + actor_id = self.env["ray"]["actor_id"] + host_name = self.env["host_name"] + return f"{self.index} ({host_name}, {actor_id})" + + def shutdown(self): + if not self.is_running: + return + + self.is_running = False + + try: + self.actor.shutdown.remote() + except Exception: + logger.exception("Failed to request actor shutdown: %s", self) + + def submit(self, key, config): + logger.info(f"job submitted to worker {self}: {key}") + job = self.actor.run.remote(key, config) + self.running_jobs.append(job) + return job + + def is_available(self): + if not self.is_running: + return False + + # Check for ready jobs, but do not block + ready_jobs, self.running_jobs = ray.wait(self.running_jobs, timeout=0) + + for job in ready_jobs: + try: + key, _result = ray.get(job) + logger.info(f"job finished on worker {self}: {key}") + except Exception: + logger.exception(f"job failed on worker {self}") + + # Available if this actor can now run another job + return len(self.running_jobs) < self.maximum_running_jobs + + +class ParallelRunner(Runner): + def __init__( + self, + kernel_source, + kernel_options, + device_options, + tuning_options, + iterations, + observers, + num_workers=None, + ): + if not ray.is_initialized(): + ray.init() + + if num_workers is None: + num_workers = int(ray.cluster_resources().get("GPU", 0)) + + if num_workers == 0: + raise RuntimeError("failed to initialize parallel runner: no GPUs found") + + if num_workers < 1: + raise RuntimeError( + f"failed to initialize parallel runner: invalid number of GPUs specified: {num_workers}" + ) + + self.workers = [] + + try: + # Start workers + for index in range(num_workers): + actor = DeviceActor.remote( + kernel_source, + kernel_options, + device_options, + tuning_options, + iterations, + observers, + ) + worker = DeviceActorState(index, actor) + self.workers.append(worker) + + logger.info(f"connected to worker {worker}") + + # Check if all workers have the same device + device_names = {w.env.get("device_name") for w in self.workers} + if len(device_names) != 1: + raise RuntimeError( + f"failed to initialize parallel runner: workers have different devices: {sorted(device_names)}" + ) + except: + # If an exception occurs, shut down the worker and reraise error + self.shutdown() + raise + + self.device_name = device_names.pop() + + # TODO: Get units from the device? + self.start_time = perf_counter() + self.units = {"time": "ms"} + self.quiet = device_options.quiet + + def get_device_info(self): + # TODO: Get this from the device? + return Options({"max_threads": 1024}) + + def get_environment(self, tuning_options): + return {"device_name": self.device_name, "workers": [w.env for w in self.workers]} + + def shutdown(self): + for worker in self.workers: + try: + worker.shutdown() + except Exception as err: + logger.exception(f"error while shutting down worker {worker}") + + def available_parallelism(self): + return len(self.workers) + + def submit_jobs(self, jobs, budget: TuningBudget): + pending_jobs = deque(jobs) + running_jobs = [] + + while pending_jobs and not budget.is_done(): + job_was_submitted = False + + # If there is still work left, submit it now + for i, worker in enumerate(list(self.workers)): + if worker.is_available(): + # Push worker to back of list + self.workers.pop(i) + self.workers.append(worker) + + # Pop job and submit it + key, config = pending_jobs.popleft() + ref = worker.submit(key, config) + running_jobs.append(ref) + + job_was_submitted = True + budget.add_evaluations(1) + break + + # If no work was submitted, wait until a worker is available + if not job_was_submitted: + if not running_jobs: + raise RuntimeError("invalid state: no ray workers available") + + ready_jobs, running_jobs = ray.wait(running_jobs, num_returns=1) + + for result in ready_jobs: + yield ray.get(result) + + # If there are still pending jobs, then the budget has been exceeded. + # We return `None` to indicate that no result is available for these jobs. + while pending_jobs: + key, _ = pending_jobs.popleft() + yield (key, None) + + # Wait until running jobs complete + while running_jobs: + ready_jobs, running_jobs = ray.wait(running_jobs, num_returns=1) + + for result in ready_jobs: + yield ray.get(result) + + def run(self, parameter_space, tuning_options) -> List[Optional[dict]]: + metrics = tuning_options.metrics + objective = tuning_options.objective + + jobs = [] # Jobs that need to be executed + results = [] # Results that will be returned at the end + key2index = dict() # Used to insert job result back into `results` + + total_worker_time = 0 + + # Select jobs which are not in the cache + for index, config in enumerate(parameter_space): + params = dict(zip(tuning_options.tune_params.keys(), config)) + key = ",".join([str(i) for i in config]) + + if key in tuning_options.cache: + params.update(tuning_options.cache[key]) + + # Simulate compile, verification, and benchmark time + tuning_options.budget.add_time(milliseconds=params["compile_time"]) + tuning_options.budget.add_time(milliseconds=params["verification_time"]) + tuning_options.budget.add_time(milliseconds=params["benchmark_time"]) + results.append(params) + else: + assert key not in key2index, "duplicate jobs submitted" + key2index[key] = index + + jobs.append((key, params)) + results.append(None) + + + # Submit jobs and wait for them to finish + for key, result in self.submit_jobs(jobs, tuning_options.budget): + # `None` indicate that no result is available since the budget is exceeded. + # We can skip it, meaning that `results` contains `None`s for these entries + if result is None: + continue + + # Store the result into the output array + results[key2index[key]] = result + + # Collect total time spent by worker + total_worker_time += ( + result["compile_time"] + result["verification_time"] + result["benchmark_time"] + ) + + if isinstance(result.get(objective), ErrorConfig): + logging.error( + "kernel configuration {key} was skipped silently due to compile or runtime failure", + key, + ) + + # print configuration to the console + print_config_output( + tuning_options.tune_params, result, self.quiet, tuning_options.metrics, self.units + ) + + # add configuration to cache + store_cache(key, result, tuning_options.cachefile, tuning_options.cache) + + total_time = 1000 * (perf_counter() - self.start_time) + self.start_time = perf_counter() + + strategy_time = self.last_strategy_time + self.last_strategy_time = 0 + + runner_time = total_time - strategy_time + framework_time = max(runner_time * len(self.workers) - total_worker_time, 0) + + num_valid_results = sum(bool(r) for r in results) # Count the number of valid results + + # Post-process all the results + for result in results: + # Skip missing results + if not result: + continue + + # Amortize the time over all the results + result["strategy_time"] = strategy_time / num_valid_results + result["framework_time"] = framework_time / num_valid_results + + # only compute metrics on configs that have not errored + if not isinstance(result.get(objective), ErrorConfig): + result = process_metrics(result, metrics) + + return results diff --git a/kernel_tuner/runners/runner.py b/kernel_tuner/runners/runner.py index 80ab3214..e95b7811 100644 --- a/kernel_tuner/runners/runner.py +++ b/kernel_tuner/runners/runner.py @@ -13,8 +13,19 @@ def __init__( ): pass + def shutdown(self): + pass + + def available_parallelism(self): + """ Gives an indication of how many jobs this runner can execute in parallel. """ + return 1 + + @abstractmethod + def get_device_info(self): + pass + @abstractmethod - def get_environment(self): + def get_environment(self, tuning_options): pass @abstractmethod diff --git a/kernel_tuner/runners/sequential.py b/kernel_tuner/runners/sequential.py index 5e53093b..1814cefe 100644 --- a/kernel_tuner/runners/sequential.py +++ b/kernel_tuner/runners/sequential.py @@ -20,15 +20,13 @@ def __init__(self, kernel_source, kernel_options, device_options, iterations, ob :param kernel_options: A dictionary with all options for the kernel. :type kernel_options: kernel_tuner.interface.Options - :param device_options: A dictionary with all options for the device - on which the kernel should be tuned. + :param device_options: A dictionary with all options for the device on which the kernel should be tuned. :type device_options: kernel_tuner.interface.Options - :param iterations: The number of iterations used for benchmarking - each kernel instance. + :param iterations: The number of iterations used for benchmarking each kernel instance. :type iterations: int """ - #detect language and create high-level device interface + # detect language and create high-level device interface self.dev = DeviceInterface(kernel_source, iterations=iterations, observers=observers, **device_options) self.units = self.dev.units @@ -41,9 +39,12 @@ def __init__(self, kernel_source, kernel_options, device_options, iterations, ob self.last_strategy_time = 0 self.kernel_options = kernel_options - #move data to the GPU + # move data to the GPU self.gpu_args = self.dev.ready_argument_list(kernel_options.arguments) + def get_device_info(self): + return self.dev + def get_environment(self, tuning_options): return self.dev.get_environment() @@ -53,21 +54,29 @@ def run(self, parameter_space, tuning_options): :param parameter_space: The parameter space as an iterable. :type parameter_space: iterable - :param tuning_options: A dictionary with all options regarding the tuning - process. - :type tuning_options: kernel_tuner.iterface.Options + :param tuning_options: A dictionary with all options regarding the tuning process. + :type tuning_options: kernel_tuner.interface.Options - :returns: A list of dictionaries for executed kernel configurations and their - execution times. - :rtype: dict()) + :returns: A list of dictionaries for executed kernel configurations and their execution times. + :rtype: dict() """ - logging.debug('sequential runner started for ' + self.kernel_options.kernel_name) + logging.debug("sequential runner started for " + self.kernel_options.kernel_name) results = [] + # self.last_strategy_time is set by cost_func + strategy_time_per_config = self.last_strategy_time / len(parameter_space) if len(parameter_space) > 0 else 0 + # iterate over parameter space for element in parameter_space: + # If the time limit is exceeded, just skip this element. Add `None` to + # indicate to CostFunc that no result is available for this config. + if tuning_options.budget.is_done(): + results.append(None) + continue + + tuning_options.budget.add_evaluations(1) params = dict(zip(tuning_options.tune_params.keys(), element)) result = None @@ -77,33 +86,47 @@ def run(self, parameter_space, tuning_options): x_int = ",".join([str(i) for i in element]) if tuning_options.cache and x_int in tuning_options.cache: params.update(tuning_options.cache[x_int]) - params['compile_time'] = 0 - params['verification_time'] = 0 - params['benchmark_time'] = 0 + + # Simulate compile, verification, and benchmark time + tuning_options.budget.add_time(milliseconds=params["compile_time"]) + tuning_options.budget.add_time(milliseconds=params["verification_time"]) + tuning_options.budget.add_time(milliseconds=params["benchmark_time"]) else: # attempt to warmup the GPU by running the first config in the parameter space and ignoring the result if not self.warmed_up: warmup_time = perf_counter() - self.dev.compile_and_benchmark(self.kernel_source, self.gpu_args, params, self.kernel_options, tuning_options) + self.dev.compile_and_benchmark( + self.kernel_source, self.gpu_args, params, self.kernel_options, tuning_options + ) self.warmed_up = True warmup_time = 1e3 * (perf_counter() - warmup_time) - result = self.dev.compile_and_benchmark(self.kernel_source, self.gpu_args, params, self.kernel_options, tuning_options) + result = self.dev.compile_and_benchmark( + self.kernel_source, self.gpu_args, params, self.kernel_options, tuning_options + ) params.update(result) if tuning_options.objective in result and isinstance(result[tuning_options.objective], ErrorConfig): - logging.debug('kernel configuration was skipped silently due to compile or runtime failure') + logging.debug("kernel configuration was skipped silently due to compile or runtime failure") # only compute metrics on configs that have not errored if tuning_options.metrics and not isinstance(params.get(tuning_options.objective), ErrorConfig): params = process_metrics(params, tuning_options.metrics) # get the framework time by estimating based on other times - total_time = 1000 * ((perf_counter() - self.start_time) - warmup_time) - params['strategy_time'] = self.last_strategy_time - params['framework_time'] = max(total_time - (params['compile_time'] + params['verification_time'] + params['benchmark_time'] + params['strategy_time']), 0) - params['timestamp'] = str(datetime.now(timezone.utc)) + total_time = 1000 * (perf_counter() - self.start_time) - warmup_time + params["strategy_time"] = strategy_time_per_config + params["framework_time"] = max( + total_time + - ( + params["compile_time"] + + params["verification_time"] + + params["benchmark_time"] + ), + 0, + ) + params["timestamp"] = str(datetime.now(timezone.utc)) self.start_time = perf_counter() if result: @@ -111,7 +134,7 @@ def run(self, parameter_space, tuning_options): print_config_output(tuning_options.tune_params, params, self.quiet, tuning_options.metrics, self.units) # add configuration to cache - store_cache(x_int, params, tuning_options) + store_cache(x_int, params, tuning_options.cachefile, tuning_options.cache) # all visited configurations are added to results to provide a trace for optimization strategies results.append(params) diff --git a/kernel_tuner/runners/simulation.py b/kernel_tuner/runners/simulation.py index 9695879d..0c0affd7 100644 --- a/kernel_tuner/runners/simulation.py +++ b/kernel_tuner/runners/simulation.py @@ -16,11 +16,11 @@ class SimulationDevice(_SimulationDevice): @property def name(self): - return self.env['device_name'] + return self.env["device_name"] @name.setter def name(self, value): - self.env['device_name'] = value + self.env["device_name"] = value if not self.quiet: print("Simulating: " + value) @@ -40,12 +40,10 @@ def __init__(self, kernel_source, kernel_options, device_options, iterations, ob :param kernel_options: A dictionary with all options for the kernel. :type kernel_options: kernel_tuner.interface.Options - :param device_options: A dictionary with all options for the device - on which the kernel should be tuned. + :param device_options: A dictionary with all options for the device on which the kernel should be tuned. :type device_options: kernel_tuner.interface.Options - :param iterations: The number of iterations used for benchmarking - each kernel instance. + :param iterations: The number of iterations used for benchmarking each kernel instance. :type iterations: int """ self.quiet = device_options.quiet @@ -56,14 +54,18 @@ def __init__(self, kernel_source, kernel_options, device_options, iterations, ob self.kernel_options = kernel_options self.start_time = perf_counter() + self.total_simulated_time = 0 self.last_strategy_start_time = self.start_time self.last_strategy_time = 0 self.units = {} + def get_device_info(self): + return self.dev + def get_environment(self, tuning_options): env = self.dev.get_environment() env["simulation"] = True - env["simulated_time"] = tuning_options.simulated_time + env["simulated_time"] = self.total_simulated_time return env def run(self, parameter_space, tuning_options): @@ -72,64 +74,62 @@ def run(self, parameter_space, tuning_options): :param parameter_space: The parameter space as an iterable. :type parameter_space: iterable - :param tuning_options: A dictionary with all options regarding the tuning - process. + :param tuning_options: A dictionary with all options regarding the tuning process. :type tuning_options: kernel_tuner.iterface.Options - :returns: A list of dictionaries for executed kernel configurations and their - execution times. + :returns: A list of dictionaries for executed kernel configurations and their execution times. :rtype: dict() """ - logging.debug('simulation runner started for ' + self.kernel_options.kernel_name) + logging.debug("simulation runner started for " + self.kernel_options.kernel_name) results = [] - # iterate over parameter space + # self.last_strategy_time is set by cost_func + strategy_time_per_config = self.last_strategy_time / len(parameter_space) if len(parameter_space) > 0 else 0 + + # iterate over parameter space for element in parameter_space: + # Append `None` to indicate that the tuning budget has been exceeded + if tuning_options.budget.is_done(): + results.append(None) + continue + # check if element is in the cache - x_int = ",".join([str(i) for i in element]) - if tuning_options.cache and x_int in tuning_options.cache: - result = tuning_options.cache[x_int].copy() + key = ",".join([str(i) for i in element]) + + if key in tuning_options.cache: + # Get from cache and create a copy + result = dict(tuning_options.cache[key]) # only compute metrics on configs that have not errored if tuning_options.metrics and not isinstance(result.get(tuning_options.objective), util.ErrorConfig): result = util.process_metrics(result, tuning_options.metrics) - - # Simulate behavior of sequential runner that when a configuration is - # served from the cache by the sequential runner, the compile_time, - # verification_time, and benchmark_time are set to 0. - # This step is only performed in the simulation runner when a configuration - # is served from the cache beyond the first timel. That is, when the - # configuration is already counted towards the unique_results. - # It is the responsibility of cost_func to add configs to unique_results. - if x_int in tuning_options.unique_results: - - result['compile_time'] = 0 - result['verification_time'] = 0 - result['benchmark_time'] = 0 - - else: - # configuration is evaluated for the first time, print to the console - util.print_config_output(tuning_options.tune_params, result, self.quiet, tuning_options.metrics, self.units) + # configuration is evaluated for the first time, print to the console + util.print_config_output( + tuning_options.tune_params, result, self.quiet, tuning_options.metrics, self.units + ) # Everything but the strategy time and framework time are simulated, - # self.last_strategy_time is set by cost_func - result['strategy_time'] = self.last_strategy_time + result["strategy_time"] = strategy_time_per_config + + # Simulate the evaluation of this configuration + tuning_options.budget.add_evaluations(1) + tuning_options.budget.add_time(milliseconds=result["compile_time"]) + tuning_options.budget.add_time(milliseconds=result["verification_time"]) + tuning_options.budget.add_time(milliseconds=result["benchmark_time"]) try: - simulated_time = result['compile_time'] + result['verification_time'] + result['benchmark_time'] - tuning_options.simulated_time += simulated_time + self.total_simulated_time += result["compile_time"] + result["verification_time"] + result["benchmark_time"] except KeyError: - if "time_limit" in tuning_options: - raise RuntimeError( - "Cannot use simulation mode with a time limit on a cache file that does not have full compile, verification, and benchmark timings on all configurations" - ) + raise RuntimeError( + "Cannot use simulation mode with a time limit on a cache file that does not have full compile, verification, and benchmark timings on all configurations" + ) total_time = 1000 * (perf_counter() - self.start_time) self.start_time = perf_counter() - result['framework_time'] = total_time - self.last_strategy_time + result["framework_time"] = total_time results.append(result) continue @@ -142,11 +142,11 @@ def run(self, parameter_space, tuning_options): result['compile_time'] = 0 result['verification_time'] = 0 result['benchmark_time'] = 0 - result['strategy_time'] = self.last_strategy_time + result['strategy_time'] = strategy_time_per_config total_time = 1000 * (perf_counter() - self.start_time) self.start_time = perf_counter() - result['framework_time'] = total_time - self.last_strategy_time + result['framework_time'] = total_time result[tuning_options.objective] = util.InvalidConfig() results.append(result) diff --git a/kernel_tuner/strategies/bayes_opt.py b/kernel_tuner/strategies/bayes_opt.py index a814e7ce..64d4c623 100644 --- a/kernel_tuner/strategies/bayes_opt.py +++ b/kernel_tuner/strategies/bayes_opt.py @@ -455,6 +455,33 @@ def fit_observations_to_model(self): """Update the model based on the current list of observations.""" self.__model.fit(self.__valid_params, self.__valid_observations) + def evaluate_parallel_objective_function(self, param_configs: list[tuple]) -> list[float]: + """Evaluates the objective function for multiple configurations in parallel.""" + results = [] + valid_param_configs = [] + valid_indices = [] + + # Extract the valid configurations + for param_config in param_configs: + param_config = self.unprune_param_config(param_config) + denormalized_param_config = self.denormalize_param_config(param_config) + if not self.__searchspace_obj.is_param_config_valid(denormalized_param_config): + results.append(self.invalid_value) + else: + valid_indices.append(len(results)) + results.append(None) + valid_param_configs.append(param_config) + + # Run valid configurations in parallel + scores = self.cost_func.eval_all(valid_param_configs) + + # Put the scores at the right location in the result + for idx, score in zip(valid_indices, scores): + results[idx] = score + + self.fevals += len(scores) + return results + def evaluate_objective_function(self, param_config: tuple) -> float: """Evaluates the objective function.""" param_config = self.unprune_param_config(param_config) diff --git a/kernel_tuner/strategies/common.py b/kernel_tuner/strategies/common.py index b51274ce..0964597d 100644 --- a/kernel_tuner/strategies/common.py +++ b/kernel_tuner/strategies/common.py @@ -84,102 +84,174 @@ def __init__( scaling: whether to internally scale parameter values. Defaults to False. snap: whether to snap given configurations to their closests equivalent in the space. Defaults to True. return_invalid: whether to return the util.ErrorConfig of an invalid configuration. Defaults to False. - return_raw: returns (result, results[raw]). Key inferred from objective if set to True. Defaults to None. """ self.searchspace = searchspace self.tuning_options = tuning_options - if isinstance(self.tuning_options, dict): - self.tuning_options["max_fevals"] = min( - tuning_options["max_fevals"] if "max_fevals" in tuning_options else np.inf, searchspace.size - ) + self.objective = tuning_options.objective + self.objective_higher_is_better = tuning_options.objective_higher_is_better + self.constraint_aware = bool(tuning_options.strategy_options.get("constraint_aware")) self.runner = runner self.scaling = scaling self.snap = snap self.return_invalid = return_invalid - self.return_raw = return_raw - if return_raw is True: - self.return_raw = f"{tuning_options['objective']}s" + self.unique_results = dict() self.results = [] self.budget_spent_fraction = 0.0 self.invalid_return_value = invalid_value + def _normalize_and_validate_config(self, x, check_restrictions=True): + # snap values in x to nearest actual value for each parameter, unscale x if needed + if self.snap: + if self.scaling: + config = unscale_and_snap_to_nearest(x, self.searchspace.tune_params, self.tuning_options.eps) + else: + config = snap_to_nearest_config(x, self.searchspace.tune_params) + else: + config = x - def __call__(self, x, check_restrictions=True): - """Cost function used by almost all strategies.""" + is_legal = True + + # else check if this is a legal (non-restricted) configuration + if check_restrictions: + is_legal = self.searchspace.is_param_config_valid(tuple(config)) + + # Attempt to repare the config + if not is_legal and self.constraint_aware: + # attempt to repair + new_config = unscale_and_snap_to_nearest_valid(x, config, self.searchspace, self.tuning_options.eps) + + if new_config: + config = new_config + is_legal = True + + return config, is_legal + + + def _run_configs(self, xs, check_restrictions=True): + """ Takes a list of Euclidian coordinates and evaluates the configurations at those points. """ self.runner.last_strategy_time = 1000 * (perf_counter() - self.runner.last_strategy_start_time) + self.runner.start_time = perf_counter() # start framework time # error value to return for numeric optimizers that need a numerical value logging.debug("_cost_func called") - logging.debug("x: %s", str(x)) # check if max_fevals is reached or time limit is exceeded - self.budget_spent_fraction = util.check_stop_criterion(self.tuning_options) + self.tuning_options.budget.raise_exception_if_done() + + batch_configs = [] # The configs to run + batch_keys = [] # The keys of the configs to run + pending_indices_by_key = dict() # Maps key => where to store result in `final_results` + final_results = [] # List returned to the user + legal_indices = [] # Indices in `final_results` that are legal + + # Loop over all configurations. For each configurations there are four cases: + # 1. The configuration is invalid, we can skip it + # 2. The configuration is in `unique_results`, we can get it from there + # 3. The configuration is in `pending_indices_by_key`, it is duplicate in `xs` + # 4. The configuration must be evaluated by the runner. + for index, x in enumerate(xs): + config, is_legal = self._normalize_and_validate_config(x, check_restrictions=check_restrictions) + logging.debug("normalize config: %s -> %s (legal: %s)", str(x), str(config), is_legal) + key = ",".join([str(i) for i in config]) + + # 1. Not legal, just return `InvalidConfig` + if not is_legal: + result = dict(zip(self.searchspace.tune_params.keys(), config)) + result[self.objective] = util.InvalidConfig() + final_results.append(result) + + # 2. Attempt to retrieve from `unique_results` + elif key in self.unique_results: + result = dict(self.unique_results[key]) + legal_indices.append(index) + final_results.append(result) + + # 3. We have already seen this config in the current batch + elif key in pending_indices_by_key: + pending_indices_by_key[key].append(index) + final_results.append(None) + + # 4. A new config, we must evaluate this + else: + batch_keys.append(key) + batch_configs.append(config) + pending_indices_by_key[key] = [index] + final_results.append(None) - # snap values in x to nearest actual value for each parameter, unscale x if needed - if self.snap: - if self.scaling: - params = unscale_and_snap_to_nearest(x, self.searchspace.tune_params, self.tuning_options.eps) + # compile and benchmark the batch + batch_results = self.runner.run(batch_configs, self.tuning_options) + + for key, result in zip(batch_keys, batch_results): + # Skip. Result is missing because the runner has exhausted the budget + if result is None: + continue + + # set in the results array + for index in pending_indices_by_key[key]: + legal_indices.append(index) + final_results[index] = dict(result) + + # Disable the timings. Only the first result must get these. + result["compile_time"] = 0 + result["verification_time"] = 0 + result["benchmark_time"] = 0 + + # Put result in `unique_results` + self.unique_results[key] = result + + # Only things in `legal_indices` are valid results + for index in sorted(legal_indices): + self.results.append(final_results[index]) + + # upon returning from this function control will be given back to the strategy, so reset the start time + self.runner.last_strategy_start_time = perf_counter() + + # this check is necessary because some strategies cannot handle partially completed requests + # for example when only half of the configs in a population have been evaluated + self.tuning_options.budget.raise_exception_if_done() + self.budget_spent_fraction = self.tuning_options.budget.get_fraction_consumed() + + # If some results are missing (`None`), then the runner did not return all results + # because the budget has been exceed or some other reason causing the runner to fail. + if not all(final_results): + raise util.StopCriterionReached("runner did not evaluate all given configurations") + + return final_results + + def eval_all(self, xs, check_restrictions=True): + """Cost function used by almost all strategies.""" + results = self._run_configs(xs, check_restrictions=check_restrictions) + return_values = [] + + for result in results: + # get numerical return value, taking optimization direction into account + return_value = result[self.objective] + + if not isinstance(return_value, util.ErrorConfig): + # this is a valid configuration, so invert value in case of maximization + if self.objective_higher_is_better: + return_value = -return_value else: - params = snap_to_nearest_config(x, self.searchspace.tune_params) - else: - params = x - logging.debug("params %s", str(params)) + # this is not a valid configuration, replace with float max if needed + if not self.return_invalid: + return_value = sys.float_info.max - legal = True - result = {} - x_int = ",".join([str(i) for i in params]) + # include raw data in return if requested + return_values.append(return_value) - # else check if this is a legal (non-restricted) configuration - if check_restrictions and self.searchspace.restrictions: - legal = self.searchspace.is_param_config_valid(tuple(params)) - - - if not legal: - if "constraint_aware" in self.tuning_options.strategy_options and self.tuning_options.strategy_options["constraint_aware"]: - # attempt to repair - new_params = unscale_and_snap_to_nearest_valid(x, params, self.searchspace, self.tuning_options.eps) - if new_params: - params = new_params - legal = True - x_int = ",".join([str(i) for i in params]) - - if not legal: - params_dict = dict(zip(self.searchspace.tune_params.keys(), params)) - result = params_dict - result[self.tuning_options.objective] = util.InvalidConfig() - - if legal: - # compile and benchmark this instance - res = self.runner.run([params], self.tuning_options) - result = res[0] - - # append to tuning results - if x_int not in self.tuning_options.unique_results: - self.tuning_options.unique_results[x_int] = result - - self.results.append(result) - - # upon returning from this function control will be given back to the strategy, so reset the start time - self.runner.last_strategy_start_time = perf_counter() - - # get numerical return value, taking optimization direction into account - return_value = result[self.tuning_options.objective] - if not isinstance(return_value, util.ErrorConfig): - # this is a valid configuration, so invert value in case of maximization - return_value = -return_value if self.tuning_options.objective_higher_is_better else return_value - else: - # this is not a valid configuration, replace with float max if needed - if not self.return_invalid: - return_value = self.invalid_return_value + return return_values - # include raw data in return if requested - if self.return_raw is not None: - try: - return return_value, result[self.return_raw] - except KeyError: - return return_value, [np.nan] + def eval(self, x, check_restrictions=True): + return self.eval_all([x], check_restrictions=check_restrictions)[0] - return return_value + def __call__(self, x, check_restrictions=True): + return self.eval(x, check_restrictions=check_restrictions) + + def get_results(self): + return self.results + + def get_num_unique_results(self): + return len(self.unique_results) def get_start_pos(self): """Get starting position for optimization.""" @@ -234,6 +306,11 @@ def get_bounds(self): return bounds +def _get_nth_true(lst, n): + # Returns the index of the nth True value in a list + return [i for i, x in enumerate(lst) if x][n-1] + + def setup_method_arguments(method, bounds): """Prepare method specific arguments.""" kwargs = {} diff --git a/kernel_tuner/strategies/diff_evo.py b/kernel_tuner/strategies/diff_evo.py index 29577581..ad1cd57c 100644 --- a/kernel_tuner/strategies/diff_evo.py +++ b/kernel_tuner/strategies/diff_evo.py @@ -115,7 +115,7 @@ def generate_population(tune_params, max_idx, popsize, searchspace, constraint_a return population -def differential_evolution(searchspace, cost_func, bounds, popsize, maxiter, F, CR, method, constraint_aware, verbose): +def differential_evolution(searchspace, cost_func: CostFunc, bounds, popsize, maxiter, F, CR, method, constraint_aware, verbose): """ A basic implementation of the Differential Evolution algorithm. @@ -139,7 +139,7 @@ def differential_evolution(searchspace, cost_func, bounds, popsize, maxiter, F, population[0] = cost_func.get_start_pos() # Calculate the initial cost for each individual in the population - population_cost = np.array([cost_func(ind) for ind in population]) + population_cost = np.array(cost_func.eval_all(population)) # Keep track of the best solution found so far best_idx = np.argmin(population_cost) @@ -208,7 +208,7 @@ def differential_evolution(searchspace, cost_func, bounds, popsize, maxiter, F, # --- c. Selection --- # Calculate the cost of the new trial vectors - trial_population_cost = np.array([cost_func(ind) for ind in trial_population]) + trial_population_cost = np.array(cost_func.eval_all(trial_population)) # Keep track of whether population changes over time no_change = True @@ -244,7 +244,7 @@ def differential_evolution(searchspace, cost_func, bounds, popsize, maxiter, F, print(f"Generation {generation + 1}, Best Cost: {best_cost:.6f}") if verbose: - print(f"Differential Evolution completed fevals={len(cost_func.tuning_options.unique_results)}") + print(f"Differential Evolution completed fevals={cost_func.get_num_unique_results()}") return {"solution": best_solution, "cost": best_cost} diff --git a/kernel_tuner/strategies/firefly_algorithm.py b/kernel_tuner/strategies/firefly_algorithm.py index a732d404..861c5f86 100644 --- a/kernel_tuner/strategies/firefly_algorithm.py +++ b/kernel_tuner/strategies/firefly_algorithm.py @@ -44,13 +44,14 @@ def tune(searchspace: Searchspace, runner, tuning_options): swarm[0].position = x0 # compute initial intensities - for j in range(num_particles): - try: + try: + for j in range(num_particles): swarm[j].compute_intensity(cost_func) - except StopCriterionReached as e: - if tuning_options.verbose: - print(e) - return cost_func.results + except StopCriterionReached as e: + if tuning_options.verbose: + print(e) + return cost_func.results + for j in range(num_particles): if swarm[j].score <= best_score_global: best_position_global = swarm[j].position best_score_global = swarm[j].score diff --git a/kernel_tuner/strategies/genetic_algorithm.py b/kernel_tuner/strategies/genetic_algorithm.py index 804758ee..fa1f6cc9 100644 --- a/kernel_tuner/strategies/genetic_algorithm.py +++ b/kernel_tuner/strategies/genetic_algorithm.py @@ -43,19 +43,17 @@ def tune(searchspace: Searchspace, runner, tuning_options): # determine fitness of population members weighted_population = [] - for dna in population: - try: - # if we are not constraint-aware we should check restrictions upon evaluation - time = cost_func(dna, check_restrictions=not constraint_aware) - num_evaluated += 1 - except StopCriterionReached as e: - if tuning_options.verbose: - print(e) - return cost_func.results - - weighted_population.append((dna, time)) + try: + # if we are not constraint-aware we should check restrictions upon evaluation + times = cost_func.eval_all(population, check_restrictions=not constraint_aware) + num_evaluated += len(population) + except StopCriterionReached as e: + if tuning_options.verbose: + print(e) + return cost_func.results # population is sorted such that better configs have higher chance of reproducing + weighted_population = list(zip(population, times)) weighted_population.sort(key=lambda x: x[1]) # 'best_score' is used only for printing diff --git a/kernel_tuner/strategies/greedy_ils.py b/kernel_tuner/strategies/greedy_ils.py index d9cf67ec..fde8bb13 100644 --- a/kernel_tuner/strategies/greedy_ils.py +++ b/kernel_tuner/strategies/greedy_ils.py @@ -37,16 +37,15 @@ def tune(searchspace: Searchspace, runner, tuning_options): last_improvement = 0 while fevals < max_fevals: - try: - candidate = base_hillclimb(candidate, neighbor, max_fevals, searchspace, tuning_options, cost_func, restart=restart, randomize=True) + candidate = base_hillclimb(candidate, neighbor, max_fevals, searchspace, cost_func, restart=restart, randomize=True) new_score = cost_func(candidate, check_restrictions=False) except StopCriterionReached as e: if tuning_options.verbose: print(e) return cost_func.results - fevals = len(tuning_options.unique_results) + fevals = cost_func.get_num_unique_results() if new_score < best_score: last_improvement = 0 else: diff --git a/kernel_tuner/strategies/greedy_mls.py b/kernel_tuner/strategies/greedy_mls.py index 4edd2f0a..dd02ff44 100644 --- a/kernel_tuner/strategies/greedy_mls.py +++ b/kernel_tuner/strategies/greedy_mls.py @@ -29,15 +29,14 @@ def tune(searchspace: Searchspace, runner, tuning_options): #while searching while fevals < max_fevals: try: - base_hillclimb(candidate, neighbor, max_fevals, searchspace, tuning_options, cost_func, restart=restart, randomize=randomize, order=order) + base_hillclimb(candidate, neighbor, max_fevals, searchspace, cost_func, restart=restart, randomize=randomize, order=order) except StopCriterionReached as e: if tuning_options.verbose: print(e) return cost_func.results candidate = searchspace.get_random_sample(1)[0] - - fevals = len(tuning_options.unique_results) + fevals = cost_func.get_num_unique_results() return cost_func.results diff --git a/kernel_tuner/strategies/hillclimbers.py b/kernel_tuner/strategies/hillclimbers.py index 120bc926..a4632801 100644 --- a/kernel_tuner/strategies/hillclimbers.py +++ b/kernel_tuner/strategies/hillclimbers.py @@ -4,7 +4,7 @@ from kernel_tuner.strategies.common import CostFunc -def base_hillclimb(base_sol: tuple, neighbor_method: str, max_fevals: int, searchspace: Searchspace, tuning_options, +def base_hillclimb(base_sol: tuple, neighbor_method: str, max_fevals: int, searchspace: Searchspace, cost_func: CostFunc, restart=True, randomize=True, order=None): """Hillclimbing search until max_fevals is reached or no improvement is found. @@ -25,10 +25,6 @@ def base_hillclimb(base_sol: tuple, neighbor_method: str, max_fevals: int, searc :params searchspace: The searchspace object. :type searchspace: Seachspace - :param tuning_options: A dictionary with all options regarding the tuning - process. - :type tuning_options: dict - :param cost_func: An instance of `kernel_tuner.strategies.common.CostFunc` :type runner: kernel_tuner.strategies.common.CostFunc @@ -72,33 +68,39 @@ def base_hillclimb(base_sol: tuple, neighbor_method: str, max_fevals: int, searc if randomize: random.shuffle(indices) + children = [] + # in each dimension see the possible values for index in indices: neighbors = searchspace.get_param_neighbors(tuple(child), index, neighbor_method, randomize) # for each value in this dimension for val in neighbors: - orig_val = child[index] + child = list(child) child[index] = val + children.append(child) + if restart: + for child in children: # get score for this position score = cost_func(child) - # generalize this to other tuning objectives if score < best_score: best_score = score base_sol = child[:] found_improved = True - if restart: - break - else: - child[index] = orig_val + break + else: + # get score for all positions in parallel + scores = cost_func.eval_all(children, check_restrictions=False) - fevals = len(tuning_options.unique_results) - if fevals >= max_fevals: - return base_sol + for child, score in zip(children, scores): + if score < best_score: + best_score = score + base_sol = child[:] + found_improved = True - if found_improved and restart: - break + if found_improved and restart: + break return base_sol diff --git a/kernel_tuner/strategies/pso.py b/kernel_tuner/strategies/pso.py index e8489d12..eefbc866 100644 --- a/kernel_tuner/strategies/pso.py +++ b/kernel_tuner/strategies/pso.py @@ -51,24 +51,26 @@ def tune(searchspace: Searchspace, runner, tuning_options): if tuning_options.verbose: print("start iteration ", i, "best time global", best_score_global) + try: + scores = cost_func.eval_all([p.position for p in swarm]) + except StopCriterionReached as e: + if tuning_options.verbose: + print(e) + return cost_func.results + # evaluate particle positions - for j in range(num_particles): - try: - swarm[j].evaluate(cost_func) - except StopCriterionReached as e: - if tuning_options.verbose: - print(e) - return cost_func.results + for p, score in zip(swarm, scores): + p.set_score(score) # update global best if needed - if swarm[j].score <= best_score_global: - best_position_global = swarm[j].position - best_score_global = swarm[j].score + if score <= best_score_global: + best_position_global = p.position + best_score_global = score # update particle velocities and positions - for j in range(0, num_particles): - swarm[j].update_velocity(best_position_global, w, c1, c2) - swarm[j].update_position(bounds) + for p in swarm: + p.update_velocity(best_position_global, w, c1, c2) + p.update_position(bounds) if tuning_options.verbose: print("Final result:") @@ -92,7 +94,10 @@ def __init__(self, bounds): self.score = sys.float_info.max def evaluate(self, cost_func): - self.score = cost_func(self.position) + self.set_score(cost_func(self.position)) + + def set_score(self, score): + self.score = score # update best_pos if needed if self.score < self.best_score: self.best_pos = self.position diff --git a/kernel_tuner/strategies/pyatf_strategies.py b/kernel_tuner/strategies/pyatf_strategies.py index d0d67778..1b82391c 100644 --- a/kernel_tuner/strategies/pyatf_strategies.py +++ b/kernel_tuner/strategies/pyatf_strategies.py @@ -85,7 +85,7 @@ def tune(searchspace: Searchspace, runner, tuning_options): try: # optimization loop (KT-compatible re-implementation of `make_step` from TuningRun) - while len(tuning_options.unique_results) < searchspace.size: + while cost_func.get_num_unique_results() < searchspace.size: # get new coordinates if not coordinates_or_indices: diff --git a/kernel_tuner/strategies/random_sample.py b/kernel_tuner/strategies/random_sample.py index 33b5075d..19440149 100644 --- a/kernel_tuner/strategies/random_sample.py +++ b/kernel_tuner/strategies/random_sample.py @@ -20,16 +20,13 @@ def tune(searchspace: Searchspace, runner, tuning_options): num_samples = min(tuning_options.max_fevals, searchspace.size) samples = searchspace.get_random_sample(num_samples) - cost_func = CostFunc(searchspace, tuning_options, runner) - for sample in samples: - try: - cost_func(sample, check_restrictions=False) - except StopCriterionReached as e: - if tuning_options.verbose: - print(e) - return cost_func.results + try: + cost_func.eval_all(samples, check_restrictions=False) + except StopCriterionReached as e: + if tuning_options.verbose: + print(e) return cost_func.results diff --git a/kernel_tuner/strategies/simulated_annealing.py b/kernel_tuner/strategies/simulated_annealing.py index 962a1e34..b73bf0d6 100644 --- a/kernel_tuner/strategies/simulated_annealing.py +++ b/kernel_tuner/strategies/simulated_annealing.py @@ -68,7 +68,7 @@ def tune(searchspace: Searchspace, runner, tuning_options): pos = new_pos old_cost = new_cost - c = len(tuning_options.unique_results) + c = cost_func.get_num_unique_results() T = T_start * alpha**(max_iter/max_fevals*c) # check if solver gets stuck and if so restart from random position diff --git a/kernel_tuner/util.py b/kernel_tuner/util.py index 2c50bd6c..99c2a2f6 100644 --- a/kernel_tuner/util.py +++ b/kernel_tuner/util.py @@ -1,5 +1,6 @@ """Module for kernel tuner utility functions.""" import ast +from datetime import timedelta import errno import json import logging @@ -187,28 +188,75 @@ def check_argument_list(kernel_name, kernel_string, args): warnings.warn(errors[0], UserWarning) -def check_stop_criterion(to: dict) -> float: - """Check if the stop criterion is reached. +class TuningBudget: + def __init__(self, time_limit=None, max_fevals=None): + if time_limit is not None and not isinstance(time_limit, timedelta): + time_limit = timedelta(seconds=time_limit) - Args: - to (dict): tuning options. + if max_fevals is not None and max_fevals <= 0: + raise ValueError("max_fevals must be greater than zero") + + if time_limit is not None and time_limit <= timedelta(seconds=0): + raise ValueError("time_limit must be greater than zero") - Raises: - StopCriterionReached: if the max_fevals is reached or time limit is exceeded. + self.start_time_seconds = time.perf_counter() + self.time_spent_extra = timedelta() + self.time_limit = time_limit + self.num_fevals = 0 + self.max_fevals = max_fevals + + def add_evaluations(self, n=1): + self.num_fevals += n + + def add_time(self, seconds=0, milliseconds=0): + self.time_spent_extra += timedelta(seconds=seconds, milliseconds=milliseconds) + + def get_time_spent(self) -> timedelta: + seconds_passed = time.perf_counter() - self.start_time_seconds + return timedelta(seconds=seconds_passed) + self.time_spent_extra + + def get_time_remaining(self) -> timedelta: + if self.time_limit is not None: + return max(self.time_limit - self.get_time_spent(), timedelta(seconds=0)) + else: + return timedelta.max + + def get_evaluations_spent(self) -> int: + return self.num_fevals + + def get_evaluations_remaining(self) -> int: + if self.max_fevals is not None: + return max(self.max_fevals - self.num_fevals, 0) + else: + return float("inf") + + def is_done(self) -> bool: + if self.max_fevals is not None and self.num_fevals >= self.max_fevals: + return True - Returns: - float: fraction of budget spent. If both max_fevals and time_limit are set, it returns the fraction of time. - """ - if "max_fevals" in to: - if len(to.unique_results) >= to.max_fevals: - raise StopCriterionReached(f"max_fevals ({to.max_fevals}) reached") - if not "time_limit" in to: - return len(to.unique_results) / to.max_fevals - if "time_limit" in to: - time_spent = (time.perf_counter() - to.start_time) + (to.simulated_time * 1e-3) + to.startup_time - if time_spent > to.time_limit: + if self.time_limit is not None and self.get_time_spent() > self.time_limit: + return True + + return False + + def raise_exception_if_done(self): + if self.max_fevals is not None and self.num_fevals >= self.max_fevals: + raise StopCriterionReached(f"max_fevals ({self.max_fevals}) reached") + + if self.time_limit is not None and self.get_time_spent() > self.time_limit: raise StopCriterionReached("time limit exceeded") - return time_spent / to.time_limit + + def get_fraction_consumed(self) -> float: + if self.max_fevals is not None and self.time_limit is not None: + time_spent = self.get_time_spent() + return min(1.0, time_spent / self.time_limit, self.num_fevals / self.max_fevals) + elif self.max_fevals is not None: + return min(1.0, self.num_fevals / self.max_fevals) + elif self.time_limit is not None: + return min(1.0, self.get_time_spent() / self.time_limit) + else: + return 0.0 + @@ -684,17 +732,18 @@ def process_metrics(params, metrics): :rtype: dict """ - if not isinstance(metrics, dict): - raise ValueError("metrics should be a dictionary to preserve order and support composability") - for k, v in metrics.items(): - if isinstance(v, str): - value = eval(replace_param_occurrences(v, params)) - elif callable(v): - value = v(params) - else: - raise ValueError("metric dicts values should be strings or callable") - # We overwrite any existing values for the given key - params[k] = value + if metrics is not None: + if not isinstance(metrics, dict): + raise ValueError("metrics should be a dictionary to preserve order and support composability") + for k, v in metrics.items(): + if isinstance(v, str): + value = eval(replace_param_occurrences(v, params)) + elif callable(v): + value = v(params) + else: + raise ValueError("metric dicts values should be strings or callable") + # We overwrite any existing values for the given key + params[k] = value return params @@ -1140,7 +1189,7 @@ def check_matching_problem_size(cached_problem_size, problem_size): if cached_problem_size_arr.size != problem_size_arr.size or not (cached_problem_size_arr == problem_size_arr).all(): raise ValueError(f"Cannot load cache which contains results for different problem_size, cache: {cached_problem_size}, requested: {problem_size}") -def process_cache(cache, kernel_options, tuning_options, runner): +def process_cache(cachefile, kernel_options, tuning_options, runner): """Cache file for storing tuned configurations. the cache file is stored using JSON and uses the following format: @@ -1169,9 +1218,9 @@ def process_cache(cache, kernel_options, tuning_options, runner): raise ValueError("Caching only works correctly when tunable parameters are stored in a dictionary") # if file does not exist, create new cache - if not os.path.isfile(cache): + if not os.path.isfile(cachefile): if tuning_options.simulation_mode: - raise ValueError(f"Simulation mode requires an existing cachefile: file {cache} does not exist") + raise ValueError(f"Simulation mode requires an existing cachefile: file {cachefile} does not exist") c = dict() c["device_name"] = runner.dev.name @@ -1185,15 +1234,14 @@ def process_cache(cache, kernel_options, tuning_options, runner): contents = json.dumps(c, cls=NpEncoder, indent="")[:-3] # except the last "}\n}" # write the header to the cachefile - with open(cache, "w") as cachefile: - cachefile.write(contents) + with open(cachefile, "w") as f: + f.write(contents) - tuning_options.cachefile = cache - tuning_options.cache = {} + return {} # if file exists else: - cached_data = read_cache(cache, open_cache=not tuning_options.simulation_mode) + cached_data = read_cache(cachefile, open_cache=not tuning_options.simulation_mode) # if in simulation mode, use the device name from the cache file as the runner device name if runner.simulation_mode: @@ -1219,17 +1267,16 @@ def process_cache(cache, kernel_options, tuning_options, runner): ) raise ValueError( f"Cannot load cache which contains results obtained with different tunable parameters. \ - Cache at '{cache}' has: {cached_data['tune_params_keys']}, tuning_options has: {list(tuning_options.tune_params.keys())}" + Cache at '{cachefile}' has: {cached_data['tune_params_keys']}, tuning_options has: {list(tuning_options.tune_params.keys())}" ) - tuning_options.cachefile = cache - tuning_options.cache = cached_data["cache"] + return cached_data["cache"] -def correct_open_cache(cache, open_cache=True): +def correct_open_cache(cachefile, open_cache=True): """If cache file was not properly closed, pretend it was properly closed.""" - with open(cache, "r") as cachefile: - filestr = cachefile.read().strip() + with open(cachefile, "r") as f: + filestr = f.read().strip() # if file was not properly closed, pretend it was properly closed if len(filestr) > 0 and filestr[-3:] not in ["}\n}", "}}}"]: @@ -1241,15 +1288,15 @@ def correct_open_cache(cache, open_cache=True): else: if open_cache: # if it was properly closed, open it for appending new entries - with open(cache, "w") as cachefile: - cachefile.write(filestr[:-3] + ",") + with open(cachefile, "w") as f: + f.write(filestr[:-3] + ",") return filestr -def read_cache(cache, open_cache=True): +def read_cache(cachefile, open_cache=True): """Read the cachefile into a dictionary, if open_cache=True prepare the cachefile for appending.""" - filestr = correct_open_cache(cache, open_cache) + filestr = correct_open_cache(cachefile, open_cache) error_configs = { "InvalidConfig": InvalidConfig(), @@ -1267,25 +1314,25 @@ def read_cache(cache, open_cache=True): return cache_data -def close_cache(cache): - if not os.path.isfile(cache): +def close_cache(cachefile): + if not os.path.isfile(cachefile): raise ValueError("close_cache expects cache file to exist") - with open(cache, "r") as fh: + with open(cachefile, "r") as fh: contents = fh.read() # close to file to make sure it can be read by JSON parsers if contents[-1] == ",": - with open(cache, "w") as fh: + with open(cachefile, "w") as fh: fh.write(contents[:-1] + "}\n}") -def store_cache(key, params, tuning_options): +def store_cache(key, params, cachefile, cache): """Stores a new entry (key, params) to the cachefile.""" # logging.debug('store_cache called, cache=%s, cachefile=%s' % (tuning_options.cache, tuning_options.cachefile)) - if isinstance(tuning_options.cache, dict): - if key not in tuning_options.cache: - tuning_options.cache[key] = params + if isinstance(cache, dict): + if key not in cache: + cache[key] = params # Convert ErrorConfig objects to string, wanted to do this inside the JSONconverter but couldn't get it to work output_params = params.copy() @@ -1293,9 +1340,9 @@ def store_cache(key, params, tuning_options): if isinstance(v, ErrorConfig): output_params[k] = str(v) - if tuning_options.cachefile: - with open(tuning_options.cachefile, "a") as cachefile: - cachefile.write("\n" + json.dumps({key: output_params}, cls=NpEncoder)[1:-1] + ",") + if cachefile: + with open(cachefile, "a") as f: + f.write("\n" + json.dumps({key: output_params}, cls=NpEncoder)[1:-1] + ",") def dump_cache(obj: str, tuning_options): diff --git a/test/strategies/test_bayesian_optimization.py b/test/strategies/test_bayesian_optimization.py index f8c889aa..5c7bab32 100644 --- a/test/strategies/test_bayesian_optimization.py +++ b/test/strategies/test_bayesian_optimization.py @@ -19,6 +19,8 @@ strategy_options = dict(popsize=0, max_fevals=10) tuning_options = Options(dict(restrictions=[], tune_params=tune_params, strategy_options=strategy_options)) tuning_options["scaling"] = True +tuning_options["objective"] = "time" +tuning_options["objective_higher_is_better"] = False tuning_options["snap"] = True max_threads = 1024 searchspace = Searchspace(tune_params, [], max_threads) diff --git a/test/strategies/test_common.py b/test/strategies/test_common.py index 90f6c63e..54ecde6f 100644 --- a/test/strategies/test_common.py +++ b/test/strategies/test_common.py @@ -7,7 +7,7 @@ from kernel_tuner.searchspace import Searchspace from kernel_tuner.strategies import common from kernel_tuner.strategies.common import CostFunc -from kernel_tuner.util import StopCriterionReached +from kernel_tuner.util import StopCriterionReached, TuningBudget try: from mock import Mock @@ -30,7 +30,7 @@ def fake_runner(): def test_cost_func(): x = [1, 4] - tuning_options = Options(scaling=False, snap=False, tune_params=tune_params, + tuning_options = Options(tune_params=tune_params, budget=TuningBudget(), restrictions=None, strategy_options={}, cache={}, unique_results={}, objective="time", objective_higher_is_better=False, metrics=None) runner = fake_runner() @@ -41,14 +41,13 @@ def test_cost_func(): # check if restrictions are properly handled def restrictions(x, y): return False - tuning_options = Options(scaling=False, snap=False, tune_params=tune_params, + tuning_options = Options(tune_params=tune_params, budget=TuningBudget(), restrictions=restrictions, strategy_options={}, verbose=True, cache={}, unique_results={}, objective="time", objective_higher_is_better=False, metrics=None) - with raises(StopCriterionReached): - time = CostFunc(Searchspace(tune_params, restrictions, 1024), tuning_options, runner)(x) - assert time == sys.float_info.max + time = CostFunc(Searchspace(tune_params, restrictions, 1024), tuning_options, runner)(x) + assert time == sys.float_info.max def test_setup_method_arguments(): diff --git a/test/strategies/test_strategies.py b/test/strategies/test_strategies.py index ea5a2994..63d01dbd 100644 --- a/test/strategies/test_strategies.py +++ b/test/strategies/test_strategies.py @@ -53,6 +53,7 @@ def vector_add(): strategies.append(pytest.param(s, marks=skip_if_no_pyatf)) else: strategies.append(s) + @pytest.mark.parametrize('strategy', strategies) def test_strategies(vector_add, strategy): options = dict(popsize=5, neighbor='adjacent') @@ -96,7 +97,7 @@ def test_strategies(vector_add, strategy): tune_params = vector_add[-1] unique_results = {} for result in results: - x_int = ",".join([str(v) for k, v in result.items() if k in tune_params]) + x_int = ",".join([str(v) for k, v in result.items() if k in tune_params.keys()]) if not isinstance(result["time"], InvalidConfig): unique_results[x_int] = result["time"] assert len(unique_results) <= filter_options["max_fevals"] diff --git a/test/test_common.py b/test/test_common.py index 7c1bd683..e23a5588 100644 --- a/test/test_common.py +++ b/test/test_common.py @@ -1,20 +1,28 @@ import random import numpy as np +import pytest import kernel_tuner.strategies.common as common +import kernel_tuner.util from kernel_tuner.interface import Options from kernel_tuner.searchspace import Searchspace +@pytest.fixture +def tuning_options(): + tuning_options = Options() + tuning_options["strategy_options"] = {} + tuning_options["objective"] = "time" + tuning_options["objective_higher_is_better"] = False + tuning_options["budget"] = kernel_tuner.util.TuningBudget() + return tuning_options + -def test_get_bounds_x0_eps(): +def test_get_bounds_x0_eps(tuning_options): tune_params = dict() tune_params['x'] = [0, 1, 2, 3, 4] searchspace = Searchspace(tune_params, [], 1024) - tuning_options = Options() - tuning_options["strategy_options"] = {} - bounds, x0, eps = common.CostFunc(searchspace, tuning_options, None, scaling=True).get_bounds_x0_eps() assert bounds == [(0.0, 1.0)] @@ -27,7 +35,7 @@ def test_get_bounds_x0_eps(): assert eps == 1.0 -def test_get_bounds(): +def test_get_bounds(tuning_options): tune_params = dict() tune_params['x'] = [0, 1, 2, 3, 4] @@ -39,7 +47,7 @@ def test_get_bounds(): expected = [(0, 4), (0, 9900), (-11.2, 123.27)] searchspace = Searchspace(tune_params, None, 1024) - cost_func = common.CostFunc(searchspace, None, None) + cost_func = common.CostFunc(searchspace, tuning_options, None) answer = cost_func.get_bounds() assert answer == expected diff --git a/test/test_runners.py b/test/test_runners.py index 3a0a26e2..609ccad3 100644 --- a/test/test_runners.py +++ b/test/test_runners.py @@ -163,8 +163,8 @@ def test_time_keeping(env): answer = [args[1] + args[2], None, None, None] options = dict(method="uniform", - popsize=10, - maxiter=1, + popsize=5, + maxiter=50, mutation_chance=1, max_fevals=10) start = time.perf_counter() @@ -287,6 +287,7 @@ def test_runner(env): device_options = Options([(k, opts.get(k, None)) for k in _device_options.keys()]) tuning_options.cachefile = None + tuning_options.unique_results = {} # create runner runner = SequentialRunner(kernelsource, diff --git a/test/test_util_functions.py b/test/test_util_functions.py index e785f415..4b63e864 100644 --- a/test/test_util_functions.py +++ b/test/test_util_functions.py @@ -3,6 +3,7 @@ import json import os import warnings +import datetime import numpy as np import pytest @@ -429,6 +430,92 @@ def test_check_argument_list7(): assert_user_warning(check_argument_list, [kernel_name, kernel_string, args]) +def test_tuning_budget1(): + budget = TuningBudget() + assert budget.get_evaluations_spent() == 0 + assert budget.get_evaluations_remaining() == float("inf") + assert not budget.is_done() + budget.raise_exception_if_done() # Should not raise + assert budget.get_fraction_consumed() == 0.0 + + budget.add_evaluations(9000) + assert budget.get_evaluations_spent() == 9000 + assert budget.get_evaluations_remaining() == float("inf") + assert not budget.is_done() + budget.raise_exception_if_done() # Should not raise + assert budget.get_fraction_consumed() == 0.0 + + budget.add_time(seconds=9000) + assert budget.get_evaluations_spent() == 9000 + assert budget.get_evaluations_remaining() == float("inf") + assert not budget.is_done() + budget.raise_exception_if_done() # Should not raise + assert budget.get_fraction_consumed() == 0.0 + +def test_tuning_budget2(): + budget = TuningBudget(max_fevals=5) + assert budget.get_evaluations_spent() == 0 + assert budget.get_evaluations_remaining() == 5 + assert not budget.is_done() + budget.raise_exception_if_done() # Should not raise + assert budget.get_fraction_consumed() == 0.0 + + budget.add_evaluations(4) + assert budget.get_evaluations_spent() == 4 + assert budget.get_evaluations_remaining() == 1 + assert not budget.is_done() + budget.raise_exception_if_done() # Should not raise + assert budget.get_fraction_consumed() == 4/5 + + budget.add_evaluations(1) + assert budget.get_evaluations_spent() == 5 + assert budget.get_evaluations_remaining() == 0 + assert budget.is_done() + assert pytest.raises(StopCriterionReached, budget.raise_exception_if_done) + assert budget.get_fraction_consumed() == 1.0 + + +def test_tuning_budget3(): + # Two values are similar if they are within 0.01 + approx = lambda x: pytest.approx(x, abs=0.01) + + budget = TuningBudget(time_limit=5) + assert budget.get_time_spent().total_seconds() == approx(0) + assert budget.get_time_remaining().total_seconds() == approx(5) + assert budget.get_evaluations_spent() == 0 + assert budget.get_evaluations_remaining() == float("inf") + assert not budget.is_done() + budget.raise_exception_if_done() # Should not raise + assert budget.get_fraction_consumed() == approx(0.0) + + budget.add_evaluations(1) + assert budget.get_time_spent().total_seconds() == approx(0) + assert budget.get_time_remaining().total_seconds() == approx(5) + assert budget.get_evaluations_spent() == 1 + assert budget.get_evaluations_remaining() == float("inf") + assert not budget.is_done() + budget.raise_exception_if_done() # Should not raise + assert budget.get_fraction_consumed() == approx(0.0) + + budget.add_time(seconds=2) + assert budget.get_time_spent().total_seconds() == approx(2) + assert budget.get_time_remaining().total_seconds() == approx(3) + assert budget.get_evaluations_spent() == 1 + assert budget.get_evaluations_remaining() == float("inf") + assert not budget.is_done() + budget.raise_exception_if_done() # Should not raise + assert budget.get_fraction_consumed() == approx(2/5) + + budget.add_time(seconds=4) + assert budget.get_time_spent().total_seconds() == approx(6) + assert budget.get_time_remaining().total_seconds() == approx(0) + assert budget.get_evaluations_spent() == 1 + assert budget.get_evaluations_remaining() == float("inf") + assert budget.is_done() + assert pytest.raises(StopCriterionReached, budget.raise_exception_if_done) + assert budget.get_fraction_consumed() == 1.0 + + def test_check_tune_params_list(): tune_params = dict( zip( @@ -611,25 +698,25 @@ def assert_open_cachefile_is_correctly_parsed(cache): try: # call process_cache without pre-existing cache - process_cache(cache, kernel_options, tuning_options, runner) + tuning_options.cachefile = cache + tuning_options.cache = process_cache(cache, kernel_options, tuning_options, runner) # check if file has been created assert os.path.isfile(cache) assert_open_cachefile_is_correctly_parsed(cache) - assert tuning_options.cachefile == cache assert isinstance(tuning_options.cache, dict) assert len(tuning_options.cache) == 0 # store one entry in the cache params = {"x": 4, "time": np.float32(0.1234)} - store_cache("4", params, tuning_options) + store_cache("4", params, cache, tuning_options.cache) assert len(tuning_options.cache) == 1 # close the cache close_cache(cache) # now test process cache with a pre-existing cache file - process_cache(cache, kernel_options, tuning_options, runner) + tuning_options.cache = process_cache(cache, kernel_options, tuning_options, runner) assert_open_cachefile_is_correctly_parsed(cache) assert tuning_options.cache["4"]["time"] == params["time"] @@ -638,7 +725,7 @@ def assert_open_cachefile_is_correctly_parsed(cache): # a different kernel, device, or parameter set with pytest.raises(ValueError) as excep: kernel_options.kernel_name = "wrong_kernel" - process_cache(cache, kernel_options, tuning_options, runner) + tuning_options.cache = process_cache(cache, kernel_options, tuning_options, runner) assert "kernel" in str(excep.value) # correct the kernel name from last test @@ -646,7 +733,7 @@ def assert_open_cachefile_is_correctly_parsed(cache): with pytest.raises(ValueError) as excep: runner.dev.name = "wrong_device" - process_cache(cache, kernel_options, tuning_options, runner) + tuning_options.cache = process_cache(cache, kernel_options, tuning_options, runner) assert "device" in str(excep.value) # correct the device from last test @@ -654,7 +741,7 @@ def assert_open_cachefile_is_correctly_parsed(cache): with pytest.raises(ValueError) as excep: tuning_options.tune_params["y"] = ["a", "b"] - process_cache(cache, kernel_options, tuning_options, runner) + tuning_options.cache = process_cache(cache, kernel_options, tuning_options, runner) assert "parameter" in str(excep.value) finally: