Skip to content

add weather data #4

@xiang526

Description

@xiang526

Hi, Professor, when i read your paper, i have an idea that is to add weather(eg precipitation) into the model, then I have done something to the DeepJMQR model as following:

weather data processing

weather_feats = weather['precipitation'].values[:,np.newaxis]

---------------- Build lags

weather_feats[:-NUM_LAGS,:] = weather_feats[NUM_LAGS:,:]
weather_feats_train = weather_feats[:i_train,:]
weather_feats_val = weather_feats[i_train:i_val,:]
weather_feats_test = weather_feats[i_val:i_test,:]
#深度学习模型for mean

---------------- Independent deep learning models for mean and quantiles

def tilted_loss(q,y,f):
e = (y-f)
# The term inside k.mean is a one line simplification of the first equation
return K.mean(q*e + K.clip(-e, K.epsilon(), np.inf), axis=-1)

def build_model(loss="mse", num_outputs=1):
model = Sequential()

model.add(ConvLSTM2D(filters=100, kernel_size=(3, 3),
               input_shape=(None, nx, ny, 1),
               padding='same', return_sequences=False))
model.add(BatchNormalization())
model.add(Dropout(0.75))

model.add(Dense(units=num_outputs, 
                kernel_regularizer=regularizers.l2(0.0001),
         ))
model.add(Activation("linear"))

model.compile(loss=loss, optimizer='nadam')

return model

print ("\nTraining NN for mean...")

checkpoint best model

checkpoint = ModelCheckpoint("weights_mean.best.hdf5", monitor='val_loss', verbose=1, save_best_only=True, mode='min')

fit model to the mean

model_mean = build_model(loss="mse", num_outputs=1)
model_mean.summary()
model_mean.fit(
[X_train[:,:,:,:,np.newaxis],weather_feats_train[:,:]],
y_train[:,:,:,np.newaxis],
batch_size=128,
epochs=N_EPOCHS, #100
validation_data=([X_val[:,:,:,:,np.newaxis],weather_feats_val[:,:]],y_val[:,:,:,np.newaxis]),
callbacks=[checkpoint],
verbose=0)

But there is a error:ValueError: Error when checking model input: the list of Numpy arrays that you are passing to your model is not the size the model expected. Expected to see 1 array(s), but instead got the following list of 2 arrays

I have tried to solve this problem, but failed. Could you give me a good idea?
Thank you very much!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions