Team: Minima acción
Challenge: Hunting for Exoplanets with AI
This repository contains a reproducible Machine Learning solution designed to detect exoplanets using the Kepler Object of Interest (KOI) dataset. The system utilizes AutoGluon for automated model selection and training, wrapped in a Streamlit web interface that allows users to perform real-time predictions and retrain models dynamically.
- AutoML Integration: Utilizes AutoGluon to benchmark and select the best-performing models for exoplanet classification.
- Interactive Dashboard: A Streamlit-based UI (
Front/) to visualize data and interact with the model. - Dynamic Retraining: Capabilities to update the model with new datasets directly from the interface.
The project is organized into backend logic (ML pipeline) and frontend presentation (Web App).
.
├── Back/
│ ├── AutogluonModels/ # Serialized trained models
│ └── Exoplanet-Detection-with-ML.ipynb # Core training notebook (Jupyter)
├── Data/
│ ├── 1_cumulative_2025.csv # Primary Dataset (KOI cumulative)
│ ├── 2_TOI_2025.csv # TESS Objects of Interest
│ └── 3_k2pandc_2025.csv # K2 Candidates
├── Front/
│ ├── app_streamlit_min.py # Main entry point for the Web App
│ ├── home.py # Landing page logic
│ ├── pagina_modelo.py # UI module for model retraining
│ ├── pagina_predictor.py # UI module for inference/prediction
│ ├── create_test_from_csv.py # Data transformation pipeline
│ └── static/ # Assets (Team photos, Logos, SHAP plots)
├── Buscando Exoplanetas.pdf # Project presentation/Paper
└── requirements.txt # Dependencies
- Linux Environment
- Python 3.9+
- 8 GB RAM (Minimum for AutoGluon training)
- Virtual Environment support
- Clone the repository:
git clone git@github.com:JSR-Mario/NASA.git
cd NASA- Environment Setup: Create and activate a virtual environment to isolate dependencies.
python3 -m venv .venv
source .venv/bin/activate- Install Dependencies:
pip install -r requirements.txt- Launch the Application: Navigate to the frontend directory and start the Streamlit server.
cd Front
streamlit run app_streamlit_min.py*Access the UI at: http://localhost:8501*



