Skip to content

Knowledgator/GLiClass

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

98 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

⭐ GLiClass: Generalist and Lightweight Model for Sequence Classification

GLiClass is an efficient, zero-shot sequence classification model inspired by the GLiNER framework. It achieves comparable performance to traditional cross-encoder models while being significantly more computationally efficient, offering classification results approximately 10 times faster by performing classification in a single forward pass.

πŸ“„ Blog Β Β β€’Β Β  πŸ“’ Discord Β Β β€’Β Β  πŸ“Ί Demo Β Β β€’Β Β  πŸ€— Available models Β Β β€’Β Β 

πŸš€ Quick Start

Install GLiClass easily using pip:

pip install gliclass

Install from Source

Clone and install directly from GitHub:

git clone https://github.com/Knowledgator/GLiClass
cd GLiClass

python -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate

pip install -r requirements.txt
pip install .

Verify your installation:

import gliclass
print(gliclass.__version__)

πŸ§‘β€πŸ’» Usage Example

from gliclass import GLiClassModel, ZeroShotClassificationPipeline
from transformers import AutoTokenizer

model = GLiClassModel.from_pretrained("knowledgator/gliclass-small-v1.0")
tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-small-v1.0")

pipeline = ZeroShotClassificationPipeline(
    model, tokenizer, classification_type='multi-label', device='cuda:0'
)

text = "One day I will see the world!"
labels = ["travel", "dreams", "sport", "science", "politics"]
results = pipeline(text, labels, threshold=0.5)[0]

for result in results:
    print(f"{result['label']} => {result['score']:.3f}")

πŸ”₯ New Features

Hierarchical Labels

GLiClass now supports hierarchical label structures using dot notation:

hierarchical_labels = {
    "sentiment": ["positive", "negative", "neutral"],
    "topic": ["product", "service", "shipping"]
}

text = "The product quality is amazing but delivery was slow"
results = pipeline(text, hierarchical_labels, threshold=0.5)[0]

for result in results:
    print(f"{result['label']} => {result['score']:.3f}")
# Output:
# sentiment.positive => 0.892
# topic.product => 0.921
# topic.shipping => 0.763

Get hierarchical output matching your input structure:

results = pipeline(text, hierarchical_labels, return_hierarchical=True)[0]
print(results)
# Output:
# {
#     "sentiment": {"positive": 0.892, "negative": 0.051, "neutral": 0.124},
#     "topic": {"product": 0.921, "service": 0.153, "shipping": 0.763}
# }

Few-Shot Examples

Improve classification accuracy with in-context examples using the <<EXAMPLE>> token:

examples = [
    {
        "text": "Love this item, great quality!",
        "labels": ["positive", "product"]
    },
    {
        "text": "Customer support was unhelpful",
        "labels": ["negative", "service"]
    }
]

text = "Fast delivery and the item works perfectly!"
labels = ["positive", "negative", "product", "service", "shipping"]

results = pipeline(text, labels, examples=examples, threshold=0.5)[0]

for result in results:
    print(f"{result['label']} => {result['score']:.3f}")

Task Description Prompts

Add custom prompts to guide the classification task:

text = "The battery life on this phone is incredible"
labels = ["positive", "negative", "neutral"]

results = pipeline(
    text,
    labels,
    prompt="Classify the sentiment of this product review:",
    threshold=0.5
)[0]

Use per-text prompts for batch processing:

texts = ["Review about electronics", "Review about clothing"]
prompts = [
    "Analyze this electronics review:",
    "Analyze this clothing review:"
]

results = pipeline(texts, labels, prompt=prompts)

Long Document Classification

Process long documents with automatic text chunking:

from gliclass import ZeroShotClassificationWithChunkingPipeline

chunking_pipeline = ZeroShotClassificationWithChunkingPipeline(
    model,
    tokenizer,
    text_chunk_size=8192,
    text_chunk_overlap=256,
    labels_chunk_size=8
)

long_document = "..." # Very long text
labels = ["category1", "category2", "category3"]

results = chunking_pipeline(long_document, labels, threshold=0.5)

🌟 Retrieval-Augmented Classification (RAC)

With new models trained with retrieval-agumented classification, such as this model you can specify examples to improve classification accuracy:

example = {
    "text": "A new machine learning platform automates complex data workflows but faces integration issues.",
    "all_labels": ["AI", "automation", "data_analysis", "usability", "integration"],
    "true_labels": ["AI", "integration", "automation"]
}

text = "The new AI-powered tool streamlines data analysis but has limited integration capabilities."
labels = ["AI", "automation", "data_analysis", "usability", "integration"]

results = pipeline(text, labels, threshold=0.1, rac_examples=[example])[0]

for predict in results:
    print(f"{predict['label']} => {predict['score']:.3f}")

🎯 Key Use Cases

  • Sentiment Analysis: Rapidly classify texts as positive, negative, or neutral.
  • Document Classification: Efficiently organize and categorize large document collections.
  • Search Results Re-ranking: Improve relevance and precision by reranking search outputs.
  • News Categorization: Automatically tag and organize news articles into predefined categories.
  • Fact Checking: Quickly validate and categorize statements based on factual accuracy.

πŸ› οΈ How to Train

Prepare your training data as follows:

[
  {"text": "Sample text.", "all_labels": ["sports", "science", "business"], "true_labels": ["sports"]},
  ...
]

Optionally, specify confidence scores explicitly:

[
  {"text": "Sample text.", "all_labels": ["sports", "science"], "true_labels": {"sports": 0.9}},
  ...
]

Please, refer to the train.py script to set up your training from scratch or fine-tune existing models.

βš™οΈ Advanced Configuration

Architecture Types

GLiClass supports multiple architecture types:

  • uni-encoder: Single encoder for both text and labels (default, most efficient)
  • bi-encoder: Separate encoders for text and labels
  • bi-encoder-fused: Bi-encoder with label embeddings fused into text encoding
  • encoder-decoder: Encoder-decoder architecture for sequence-to-sequence tasks
from gliclass import GLiClassBiEncoder

# Load a bi-encoder model
model = GLiClassBiEncoder.from_pretrained("knowledgator/gliclass-biencoder-v1.0")

Pooling Strategies

Configure how token embeddings are pooled:

  • first: First token (CLS token)
  • avg: Average pooling
  • max: Max pooling
  • last: Last token
  • sum: Sum pooling
  • rms: Root mean square pooling
  • abs_max: Max of absolute values
  • abs_avg: Average of absolute values
from gliclass import GLiClassModelConfig

config = GLiClassModelConfig(
    pooling_strategy='avg',
    class_token_pooling='average'  # or 'first'
)

Scoring Mechanisms

Choose different scoring mechanisms for classification:

  • simple: Dot product (fastest)
  • weighted-dot: Weighted dot product with learned projections
  • mlp: Multi-layer perceptron scorer
  • hopfield: Hopfield network-based scorer
config = GLiClassModelConfig(
    scorer_type='mlp'
)

Gotcha β€” here’s a much leaner, README-style version, no fluff, just what matters πŸ‘‡


Flash Attention Backends

GLiClass supports optional flash attention backends for faster inference.

Install

pip install flashdeberta   # DeBERTa v2
pip install turbot5        # T5 / mT5

FlashDeBERTa (DeBERTa v2)

Enable via environment variable:

export USE_FLASHDEBERTA=1

If flashdeberta is installed, DeBERTa v2 models will use FlashDebertaV2Model. Otherwise, GLiClass falls back to DebertaV2Model.


TurboT5 (T5 / mT5)

Enable via environment variable:

export TURBOT5_ATTN_TYPE=triton-basic

If turbot5 is installed, T5 / mT5 models will use FlashT5EncoderModel. Otherwise, GLiClass falls back to T5EncoderModel.

Notes:

  • Flash backends are optional
  • Enabled automatically when available
  • No code changes required

Want it even tighter (single block), or is this the sweet spot?

πŸ“š Citations

If you find GLiClass useful in your research or project, please cite our papers:

@misc{stepanov2025gliclassgeneralistlightweightmodel,
      title={GLiClass: Generalist Lightweight Model for Sequence Classification Tasks}, 
      author={Ihor Stepanov and Mykhailo Shtopko and Dmytro Vodianytskyi and Oleksandr Lukashov and Alexander Yavorskyi and Mykyta Yaroshenko},
      year={2025},
      eprint={2508.07662},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2508.07662}, 
}

About

Generalist and Lightweight Model for Text Classification

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 6