Skip to content

MethodsConsultants/tibbletest

Repository files navigation

tibbletest

Travis build status Codecov test coverage

Installation

Install the development version from GitHub with:

devtools::install_github("MethodsConsultants/tibbletest")

Usage

propensity_weighting

library(tibbletest)

example_dat %>%
  add_propensity_weights(
    treatment = "treat",
    ivs = c("age", "sugar_factor", "gender")
  )
## Error: df[[treatment]] contains 1 missing values
example_dat %>%
  tidyr::drop_na(treat, age) %>%
  add_propensity_weights(
    treatment = "treat",
    ivs = c("age", "sugar_factor", "gender")
  ) %>%
  dplyr::glimpse()
## Observations: 495
## Variables: 10
## $ gender            <fct> male, female, male, female, male, female, fe...
## $ age               <int> 80, 60, 8, 61, 53, 73, 6, 26, 63, 76, 31, 18...
## $ sugar_factor      <dbl> 0.89372538, 0.83360390, 0.22198429, 0.665734...
## $ treat             <fct> ice cream, candy, candy, candy, candy, ice c...
## $ happiness         <fct> happy, happy, happy, happy, happy, happy, ha...
## $ happy             <fct> Yes, Yes, yes, Yes, Yes, Yes, yes, Yes, Yes,...
## $ weight            <dbl> 1.3788863, 0.9021300, 1.3989398, 1.3817288, ...
## $ no_weight         <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
## $ treat2            <chr> "pizza", "pizza", "ice cream", "pizza", "ice...
## $ propensity_weight <dbl> 0.9032606, 0.8181604, 0.8252251, 1.0340621, ...

descriptives

example_dat %>% 
  descriptives(
    treatment = "treat", 
    variables = c("age", "sugar_factor", "gender", "happiness", "happy")
  )
## # A tibble: 9 x 5
##   Variable     Label  candy         `ice cream`   `P Value`
##   <chr>        <chr>  <chr>         <chr>             <dbl>
## 1 gender       female 124 (48.25%)  110 (45.27%)     0.563 
## 2 gender       male   133 (51.75%)  133 (54.73%)     0.563 
## 3 happiness    happy  185 (76.76%)  181 (78.7%)      0.694 
## 4 happiness    sad    56 (23.24%)   49 (21.3%)       0.694 
## 5 happy        no     56 (23.24%)   49 (21.3%)       0.855 
## 6 happy        yes    47 (19.5%)    44 (19.13%)      0.855 
## 7 happy        Yes    138 (57.26%)  137 (59.57%)     0.855 
## 8 age          ""     42.26 (22.62) 42.39 (21.61)    0.946 
## 9 sugar_factor ""     0.46 (0.3)    0.52 (0.29)      0.0129
example_dat %>%
  dplyr::select(treat, age, gender) %>%
  descriptives(
    treatment = "treat"
  )
## # A tibble: 3 x 5
##   Variable Label  candy         `ice cream`   `P Value`
##   <chr>    <chr>  <chr>         <chr>             <dbl>
## 1 gender   female 124 (48.25%)  110 (45.27%)      0.563
## 2 gender   male   133 (51.75%)  133 (54.73%)      0.563
## 3 age      ""     42.26 (22.62) 42.39 (21.61)     0.946
example_dat %>%
  dplyr::select(treat, weight, age, gender) %>%
  descriptives(
    treatment = "treat",
    weights = "weight"
  )
## Weights were normalized to a mean of 1 to preserve sample size in significance tests

## # A tibble: 3 x 5
##   Variable Label  candy         `ice cream`   `P Value`
##   <chr>    <chr>  <chr>         <chr>             <dbl>
## 1 gender   female 48.65%        44.97%            0.475
## 2 gender   male   51.35%        55.03%            0.475
## 3 age      ""     42.17 (22.55) 42.43 (21.93)     0.897
example_dat %>% 
  descriptives(
    treatment = "treat", 
    variables = c("age", "sugar_factor", "gender", "happiness", "happy"),
    nonparametric = c("age")
  )
## # A tibble: 9 x 5
##   Variable     Label  candy        `ice cream`  `P Value`
##   <chr>        <chr>  <chr>        <chr>            <dbl>
## 1 gender       female 124 (48.25%) 110 (45.27%)    0.563 
## 2 gender       male   133 (51.75%) 133 (54.73%)    0.563 
## 3 happiness    happy  185 (76.76%) 181 (78.7%)     0.694 
## 4 happiness    sad    56 (23.24%)  49 (21.3%)      0.694 
## 5 happy        no     56 (23.24%)  49 (21.3%)      0.855 
## 6 happy        yes    47 (19.5%)   44 (19.13%)     0.855 
## 7 happy        Yes    138 (57.26%) 137 (59.57%)    0.855 
## 8 sugar_factor ""     0.46 (0.3)   0.52 (0.29)     0.0129
## 9 age          ""     42 [22, 62]  41 [26, 61]     0.888

format_tbl

univariate <- example_dat %>% 
  descriptives(
    variables = c("age", "sugar_factor", "gender", "happiness", "happy")
  )

univariate
## # A tibble: 9 x 3
##   Variable     Label  Statistics  
##   <chr>        <chr>  <chr>       
## 1 gender       female 235 (46.91%)
## 2 gender       male   266 (53.09%)
## 3 happiness    happy  367 (77.75%)
## 4 happiness    sad    105 (22.25%)
## 5 happy        no     105 (22.25%)
## 6 happy        yes    91 (19.28%) 
## 7 happy        Yes    276 (58.47%)
## 8 age          ""     42.3 (22.1) 
## 9 sugar_factor ""     0.49 (0.3)
univariate %>%
  format_tbl()
## # A tibble: 12 x 3
##    Variable     Label  `Statistics (N=501)`
##    <chr>        <chr>  <chr>               
##  1 gender       ""     ""                  
##  2 ""           female 235 (46.91%)        
##  3 ""           male   266 (53.09%)        
##  4 happiness    ""     ""                  
##  5 ""           happy  367 (77.75%)        
##  6 ""           sad    105 (22.25%)        
##  7 happy        ""     ""                  
##  8 ""           no     105 (22.25%)        
##  9 ""           yes    91 (19.28%)         
## 10 ""           Yes    276 (58.47%)        
## 11 age          ""     42.3 (22.1)         
## 12 sugar_factor ""     0.49 (0.3)
bivariate <- example_dat %>% 
  descriptives(
    treatment = "treat",
    variables = c("age", "sugar_factor", "gender", "happiness", "happy")
  )

bivariate
## # A tibble: 9 x 5
##   Variable     Label  candy         `ice cream`   `P Value`
##   <chr>        <chr>  <chr>         <chr>             <dbl>
## 1 gender       female 124 (48.25%)  110 (45.27%)     0.563 
## 2 gender       male   133 (51.75%)  133 (54.73%)     0.563 
## 3 happiness    happy  185 (76.76%)  181 (78.7%)      0.694 
## 4 happiness    sad    56 (23.24%)   49 (21.3%)       0.694 
## 5 happy        no     56 (23.24%)   49 (21.3%)       0.855 
## 6 happy        yes    47 (19.5%)    44 (19.13%)      0.855 
## 7 happy        Yes    138 (57.26%)  137 (59.57%)     0.855 
## 8 age          ""     42.26 (22.62) 42.39 (21.61)    0.946 
## 9 sugar_factor ""     0.46 (0.3)    0.52 (0.29)      0.0129
bivariate %>%
  format_tbl()
## # A tibble: 12 x 5
##    Variable     Label  `candy (N=257)` `ice cream (N=243)` `P Value`
##    <chr>        <chr>  <chr>           <chr>               <chr>    
##  1 gender       ""     ""              ""                  0.563    
##  2 ""           female 124 (48.25%)    110 (45.27%)        ""       
##  3 ""           male   133 (51.75%)    133 (54.73%)        ""       
##  4 happiness    ""     ""              ""                  0.694    
##  5 ""           happy  185 (76.76%)    181 (78.7%)         ""       
##  6 ""           sad    56 (23.24%)     49 (21.3%)          ""       
##  7 happy        ""     ""              ""                  0.855    
##  8 ""           no     56 (23.24%)     49 (21.3%)          ""       
##  9 ""           yes    47 (19.5%)      44 (19.13%)         ""       
## 10 ""           Yes    138 (57.26%)    137 (59.57%)        ""       
## 11 age          ""     42.26 (22.62)   42.39 (21.61)       0.946    
## 12 sugar_factor ""     0.46 (0.3)      0.52 (0.29)         0.013

About

No description, website, or topics provided.

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages