This is the official PyTorch implementation for our WWW 2026 paper.
Sirui Chen, Jiawei Chen, Canghong Jin, Sheng Zhou, Jingbang Chen, Wujie Sun and Can Wang. TopKGAT: A Top-K Objective-Driven Architecture for Recommendation arXiv link
- python==3.9.19
- numpy==1.26.4
- pandas==2.2.1
- torch==2.2.2
| Dataset | #Users | #Items | #Interactions |
|---|---|---|---|
| Ali-Display | 17,730 | 10,036 | 173,111 |
| Epinions | 17,893 | 17,659 | 301,378 |
| Food | 14,382 | 31,288 | 456,925 |
| Gowalla | 55,833 | 118,744 | 1,753,362 |
- Ali-Display
python -u code/main.py --data=Ali-Display --TopKformer_layers=4 --emb_learning_rate=1e-1 --emb_reg_lambda=1e-4- Epinions
python -u code/main.py --data=Epinions --TopKformer_layers=4 --emb_learning_rate=1e-1 --emb_reg_lambda=1e-4- Food
python -u code/main.py --data=Food --TopKformer_layers=4 --emb_learning_rate=1e-2 --emb_reg_lambda=0- Gowalla
python -u code/main.py --data=Gowalla --TopKformer_layers=3 --emb_learning_rate=1e-1 --emb_reg_lambda=0If you find the paper useful in your research, please consider citing:
@article{chen2026topkgat,
title={TopKGAT: A Top-K Objective-Driven Architecture for Recommendation},
author={Chen, Sirui and Chen, Jiawei and Jin, Canghong and Zhou, Sheng and Chen, Jingbang and Sun, Wujie and Wang, Can},
journal={arXiv preprint arXiv:2601.18432},
year={2026}
}