Skip to content
/ PartSAM Public

[ICLR 2026] PartSAM: A Scalable Promptable Part Segmentation Model Trained on Native 3D Data

License

Notifications You must be signed in to change notification settings

czvvd/PartSAM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PartSAM: A Scalable Promptable Part Segmentation Model Trained on Native 3D Data

Zhe Zhu1, Le Wan2, Rui Xu3, Yiheng Zhang4, Honghua Chen5, Zhiyang Dou3, Cheng Lin6, Yuan Liu2†, Mingqiang Wei1†
† Corresponding authors

1 Nanjing University of Aeronautics and Astronautics 2 Hong Kong University of Science and Technology 3 The University of Hong Kong 4 National University of Singapore 5 Lingnan University 6 Macau University of Science and Technology

Project Page arXiv height=

teaser

Installation

  1. Install the required environment
conda create -n PartSAM python=3.11 -y
conda activate PartSAM
# PyTorch 2.4.1 with CUDA 12.4
pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu124
pip install lightning==2.2 h5py yacs trimesh scikit-image loguru boto3
pip install mesh2sdf tetgen pymeshlab plyfile einops libigl polyscope potpourri3d simple_parsing arrgh open3d safetensors
pip install hydra-core omegaconf accelerate timm igraph ninja
pip install torch-scatter -f https://data.pyg.org/whl/torch-2.4.1+cu124.html
apt install libx11-6 libgl1 libxrender1
pip install vtk
  1. Install other third-party modules (torkit3d and apex) following Point-SAM

  2. Install the pretrained model weight

pip install -U "huggingface_hub[cli]"
huggingface-cli login
huggingface-cli download Czvvd/PartSAM --local-dir ./pretrained

Usage

# Modify the config file to evaluate your own meshes
python evaluation/eval_everypart.py

TODO

  • Release inference code of PartSAM
  • Release the pre-trained models
  • Release training code and data processing script

Acknowledgement

Our code is based on these wonderful works:

We thank the authors for their great work!

Citation

@article{zhu2025partsam,
  title={PartSAM: A Scalable Promptable Part Segmentation Model Trained on Native 3D Data}, 
  author={Zhe Zhu and Le Wan and Rui Xu and Yiheng Zhang and Honghua Chen and Zhiyang Dou and Cheng Lin and Yuan Liu and Mingqiang Wei},
  journal={arXiv preprint arXiv:2509.21965},
  year={2025}
}

About

[ICLR 2026] PartSAM: A Scalable Promptable Part Segmentation Model Trained on Native 3D Data

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages