Skip to content

Python client for accessing the turbopuffer API.

License

Notifications You must be signed in to change notification settings

foyer-work/turbopuffer-python

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

68 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

turbopuffer Python Client CI Test

The official Python client for accessing the turbopuffer API.

Usage

  1. Install the turbopuffer package and set your API key.
$ pip install turbopuffer

Or if you're able to run C binaries for JSON encoding, use:

$ pip install turbopuffer[fast]
  1. Start using the API
import turbopuffer as tpuf
tpuf.api_key = 'your-token'  # Alternatively: export=TURBOPUFFER_API_KEY=your-token

# Open a namespace
ns = tpuf.Namespace('hello_world')

# Read namespace metadata
if ns.exists():
    print(f'Namespace {ns.name} exists with {ns.dimensions()} dimensions and approximately {ns.approx_count()} vectors.')

# Upsert your dataset
ns.upsert(
    ids=[1, 2],
    vectors=[[0.1, 0.2], [0.3, 0.4]],
    attributes={'name': ['foo', 'foos']},
    distance_metric='cosine_distance',
)

# Alternatively, upsert using a row iterator
ns.upsert(
    {
        'id': id,
        'vector': [id/10, id/10],
        'attributes': {'name': 'food', 'num': 8}
    } for id in range(3, 10),
    distance_metric='cosine_distance',
)

# Query your dataset
vectors = ns.query(
    vector=[0.15, 0.22],
    distance_metric='cosine_distance',
    top_k=10,
    filters=['And', [
        ['name', 'Glob', 'foo*'],
        ['name', 'NotEq', 'food'],
    ]],
    include_attributes=['name'],
    include_vectors=True
)
print(vectors)
# [
#   VectorRow(id=2, vector=[0.30000001192092896, 0.4000000059604645], attributes={'name': 'foos'}, dist=0.001016080379486084),
#   VectorRow(id=1, vector=[0.10000000149011612, 0.20000000298023224], attributes={'name': 'foo'}, dist=0.009067952632904053)
# ]

# List all namespaces
namespaces = tpuf.namespaces()
print('Total namespaces:', len(namespaces))
for namespace in namespaces:
    print('Namespace', namespace.name, 'contains approximately', namespace.approx_count(),
            'vectors with', namespace.dimensions(), 'dimensions.')

# Delete vectors using the separate delete method
ns.delete([1, 2])

Endpoint Documentation

For more details on request parameters and query options, check the docs at https://turbopuffer.com/docs

About

Python client for accessing the turbopuffer API.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%