UEA impact study to generate a global wildfire atlas with FireCrew
plot_hdf5.py- Python script to extract an HDF5 variable and plot a timestamp on a world map using Cartopyplot_hdf5.sh- SLURM bash script submit plot_hdf5.py to the ADA job submission queuehdf5_2_netcdf.py- Python script to extract HDF5 variable arrays per timestep and save as netCDF4merge_netcdfs.py- Python script to concatenate extracted netCDF4 files per variable arrays per timestepconvert_netcdf_SN_2_NS.py- Python script to flip satellite read row order for latitudes from SN --> NSplot_highest_variance_gridcell_timeseries.py- Python script to find maximum variance gridcell per variable and plot extracted timeseries and variable mean map + locationplot_ipcc_ar6_region_classifications.py- Python script to extract IPCC AR6 region masks and plot classification on world mapplot_ipcc_ar6_land_aggregated_timeseries_stats.py- Python script to compute gridcell stats for each monthly and yearly sampled variable per IPCC AR6 regionplot_ipcc_ar6_land_aggregated_timeseries_pruning.py- Python script to aggregrate total variable monthly and yearly sampled timeseries per IPCC AR6 region and then segment the LOESS trend by optimisation of breakpointsplot_ipcc_ar6_land_aggregated_timeseries_robust_regression_5yr_means.py- Python script to aggregrate total variable monthly and yearly sampled timeseries per IPCC AR6 region and then perform a regression t-test and plot robust OLS fit + uncertainty band with 5-yr meanscreate_ipcc_ar6_region_svg.py- Python script to proudce a SVG world map for IPCC AR6 land regions
The first step is to clone the latest fire-atlas repo and step into the check out directory:
$ git clone https://github.com/patternizer/fire-atlas.git
$ cd fire-atlas
The code was tested locally in a Python 3.8.16 virtual environment.
$ python plot_hdf5.py (optional)
$ python plot_ipcc_ar6_region_classifications.py (optional)
$ python hdf5_2_netcdf.py
$ python merge_netcdfs.py
$ python convert_netcdf_SN_2_NS.py
$ python plot_ipcc_ar6_land_aggregated_timeseries_stats.py (optional)
$ python plot_ipcc_ar6_land_aggregated_timeseries_pruning.py (optional)
$ python plot_ipcc_ar6_land_aggregated_timeseries_robust_regression_5yr_means.py
$ python plot_ipcc_ar6_land_region_svg.py
The code is distributed under terms and conditions of the Open Government License.
