Skip to content

Revise README for pmu_pipeline.py and remove stubspmu#44

Open
tiamosara81-tech wants to merge 1 commit intopmu-tech:masterfrom
tiamosara81-tech:patch-1
Open

Revise README for pmu_pipeline.py and remove stubspmu#44
tiamosara81-tech wants to merge 1 commit intopmu-tech:masterfrom
tiamosara81-tech:patch-1

Conversation

@tiamosara81-tech
Copy link

pmu_pipeline.py

متطلبات: pip install requests pandas scikit-learn xgboost

import requests, pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import log_loss, brier_score_loss
import xgboost as xgb
import numpy as np

1) تحميل نتائج يومية عبر open-pmu-api (مثال)

def fetch_results(date_str):
# API مفتوح (مثال من GitHub project open-pmu-api)
url = f"https://open-pmu-api.vercel.app/results?date={date_str}"
r = requests.get(url, timeout=10)
r.raise_for_status()
return r.json()

2) تحويل JSON إلى DataFrame مبسّط

def build_dataframe(json_results):
rows = []
for race in json_results.get('races', []):
race_id = race.get('id') or race.get('raceId')
for pos, starter in enumerate(race.get('starters', []), start=1):
row = {
'race_id': race_id,
'horse': starter.get('horse_name'),
'jockey': starter.get('jockey'),
'trainer': starter.get('trainer'),
'draw': starter.get('draw'),
'weight': starter.get('weight'),
'fin_pos': starter.get('finishing_position') if starter.get('finishing_position') else 99,
'odds': float(starter.get('odds')) if starter.get('odds') else np.nan,
# هنا تضيف ميزات مشتقة لاحقاً
}
rows.append(row)
return pd.DataFrame(rows)

3) بناء ميزات بسيطة

def featurize(df):
# مثال: هدف = الفوز (fin_pos == 1)
df['target_win'] = (df['fin_pos'] == 1).astype(int)
# ميزات مبسطة: draw, weight, implied_odds
df['draw'] = pd.to_numeric(df['draw'], errors='coerce').fillna(0)
df['weight'] = pd.to_numeric(df['weight'], errors='coerce').fillna(df['weight'].median())
df['implied_prob_market'] = 1.0 / df['odds'].replace(0, np.nan)
df['implied_prob_market'].fillna(df['implied_prob_market'].median(), inplace=True)
# تحويلات سريعة للفارس/مدرب (count-based)
for col in ['jockey','trainer','horse']:
freq = df[col].value_counts().to_dict()
df[f'{col}_freq'] = df[col].map(freq).fillna(0)
return df

4) نموذج XGBoost لتنبؤ الاحتمال

def train_model(df):
features = ['draw','weight','implied_prob_market','jockey_freq','trainer_freq','horse_freq']
X = df[features].values
y = df['target_win'].values
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=42)
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test, label=y_test)
params = {'objective':'binary:logistic','eval_metric':'logloss','seed':42}
bst = xgb.train(params, dtrain, num_boost_round=100, evals=[(dtest,'eval')], early_stopping_rounds=10, verbose_eval=False)
preds = bst.predict(dtest)
print("LogLoss:", log_loss(y_test, preds))
print("Brier:", brier_score_loss(y_test, preds))
return bst, features

Example flow

if name == "main":
date = "2025-10-31" # عدّل إلى التاريخ المطلوب
j = fetch_results(date)
df = build_dataframe(j)
df = featurize(df)
model, features = train_model(df)
# حفظ النموذج أو استعماله لاحقاً لتصنيف الاحتمالات لكل سباق

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant