Account for late-bound lifetimes in generics#103448
Account for late-bound lifetimes in generics#103448cjgillot wants to merge 19 commits intorust-lang:masterfrom
Conversation
|
Some changes occurred in src/librustdoc/clean/types.rs cc @camelid Some changes occurred to MIR optimizations cc @rust-lang/wg-mir-opt Some changes occurred in compiler/rustc_codegen_cranelift cc @bjorn3 Some changes occurred in src/tools/clippy cc @rust-lang/clippy Some changes occurred to the CTFE / Miri engine cc @rust-lang/miri |
This comment has been minimized.
This comment has been minimized.
This comment has been minimized.
This comment has been minimized.
|
The Miri subtree was changed cc @rust-lang/miri |
|
☔ The latest upstream changes (presumably #103337) made this pull request unmergeable. Please resolve the merge conflicts. |
|
The job Click to see the possible cause of the failure (guessed by this bot) |
|
☔ The latest upstream changes (presumably #103623) made this pull request unmergeable. Please resolve the merge conflicts. |
…d, r=nikomatsakis avoid making substs of type aliases late bound when used as fn args fixes rust-lang#47511 fixes rust-lang#85533 (although I did not know theses issues existed when i was working on this 🙃) currently `Alias<...>` is treated the same as `Struct<...>` when deciding if generics should be late bound or early bound but this is not correct as `Alias` might normalize to a projection which does not constrain the generics. I think this needs more tests before merging more explanation of PR [here](https://hackmd.io/v44a-QVjTIqqhK9uretyQg?view) Hackmd inline for future readers: --- This assumes reader is familiar with the concept of early/late bound lifetimes. There's a section on rustc-dev-guide if not (although i think some details are a bit out of date) ## problem & background Not all lifetimes on a fn can be late bound: ```rust fn foo<'a>() -> &'a (); impl<'a> Fn<()> for FooFnDef { type Output = &'a (); // uh oh unconstrained lifetime } ``` so we make make them early bound ```rust fn foo<'a>() -> &'a (); impl<'a> Fn<()> for FooFnDef<'a> {// wow look at all that lifetimey type Output = &'a (); } ``` (Closures have the same constraint however it is not enforced leading to soundness bugs, [rust-lang#84385](rust-lang#84385) implements this "downgrading late bound to early bound" for closures) lifetimes on fn items are only late bound when they are "constrained" by the fn args: ```rust fn foo<'a>(_: &'a ()) -> &'a (); // late bound, not present on `FooFnItem` // vv impl<'a> Trait<(&'a (),)> for FooFnItem { type Output = &'a (); } // projections do not constrain inputs fn bar<'a, T: Trait>(_: <T as Trait<'a>>::Assoc) -> &'a (); // early bound // vv impl<'a, T: Trait> Fn<(<T as Trait<'a>>::Assoc,)> for BarFnItem<'a, T> { type Output = &'a (); } ``` current logic for determining if inputs "constrain" a lifetime works off of HIR so does not normalize aliases. It also assumes that any path with no self type constrains all its substs (i.e. `Foo<'a, u32>` has no self type but `T::Assoc` does). This falls apart for top level type aliases (see linked issues): ```rust type Alias<'a, T> = <T as Trait<'a>>::Assoc; // wow look its a path with no self type uwu // i bet that constrains `'a` so it should be latebound // vvvvvvvvvvv fn foo<'a, T: Trait>(_: Alias<'a, T>) -> &'a (); // `Alias` normalized to make things clearer // vvvvvvvvvvvvvvvvvvvvvvv impl<'a, T: Trait> Fn<(<T as Trait<'a>>::Assoc,)> for FooFnDef<T> { type Output = &'a (); // oh no `'a` isnt constrained wah wah waaaah *trumbone noises* // i think, idk what musical instrument that is } ``` ## solution The PR solves this by having the hir visitor that checks for lifetimes in constraining uses check if the path is a `DefKind::Alias`. If it is we ""normalize"" it by calling `type_of` and walking the returned type. This is a bit hacky as it requires a mapping between the substs on the path in hir, and the generics of the `type Alias<...>` which is on the ty layer. Alternative solutions may involve calculating the "late boundness" of lifetimes after/during astconv rather than relying on hir at all. We already have code to determine whether a lifetime SHOULD be late bound or not as this is currently how the error for `fn foo<'a, T: Trait>(_: Alias<'a, T>) -> &'a ();` gets emitted. It is probably not possible to do this right now, late boundness is used by `generics_of` and `gather_explicit_predicates_of` as we currently do not put late bound lifetimes in `Generics`. Although this seems sus to me as the long term goal is to make all generics late bound which would result in `generics_of(function)` being empty? [rust-lang#103448](rust-lang#103448) places all lifetimes in `Generics` regardless of late boundness so that may be a good step towards making this possible.
…d, r=nikomatsakis avoid making substs of type aliases late bound when used as fn args fixes rust-lang#47511 fixes rust-lang#85533 (although I did not know theses issues existed when i was working on this 🙃) currently `Alias<...>` is treated the same as `Struct<...>` when deciding if generics should be late bound or early bound but this is not correct as `Alias` might normalize to a projection which does not constrain the generics. I think this needs more tests before merging more explanation of PR [here](https://hackmd.io/v44a-QVjTIqqhK9uretyQg?view) Hackmd inline for future readers: --- This assumes reader is familiar with the concept of early/late bound lifetimes. There's a section on rustc-dev-guide if not (although i think some details are a bit out of date) ## problem & background Not all lifetimes on a fn can be late bound: ```rust fn foo<'a>() -> &'a (); impl<'a> Fn<()> for FooFnDef { type Output = &'a (); // uh oh unconstrained lifetime } ``` so we make make them early bound ```rust fn foo<'a>() -> &'a (); impl<'a> Fn<()> for FooFnDef<'a> {// wow look at all that lifetimey type Output = &'a (); } ``` (Closures have the same constraint however it is not enforced leading to soundness bugs, [rust-lang#84385](rust-lang#84385) implements this "downgrading late bound to early bound" for closures) lifetimes on fn items are only late bound when they are "constrained" by the fn args: ```rust fn foo<'a>(_: &'a ()) -> &'a (); // late bound, not present on `FooFnItem` // vv impl<'a> Trait<(&'a (),)> for FooFnItem { type Output = &'a (); } // projections do not constrain inputs fn bar<'a, T: Trait>(_: <T as Trait<'a>>::Assoc) -> &'a (); // early bound // vv impl<'a, T: Trait> Fn<(<T as Trait<'a>>::Assoc,)> for BarFnItem<'a, T> { type Output = &'a (); } ``` current logic for determining if inputs "constrain" a lifetime works off of HIR so does not normalize aliases. It also assumes that any path with no self type constrains all its substs (i.e. `Foo<'a, u32>` has no self type but `T::Assoc` does). This falls apart for top level type aliases (see linked issues): ```rust type Alias<'a, T> = <T as Trait<'a>>::Assoc; // wow look its a path with no self type uwu // i bet that constrains `'a` so it should be latebound // vvvvvvvvvvv fn foo<'a, T: Trait>(_: Alias<'a, T>) -> &'a (); // `Alias` normalized to make things clearer // vvvvvvvvvvvvvvvvvvvvvvv impl<'a, T: Trait> Fn<(<T as Trait<'a>>::Assoc,)> for FooFnDef<T> { type Output = &'a (); // oh no `'a` isnt constrained wah wah waaaah *trumbone noises* // i think, idk what musical instrument that is } ``` ## solution The PR solves this by having the hir visitor that checks for lifetimes in constraining uses check if the path is a `DefKind::Alias`. If it is we ""normalize"" it by calling `type_of` and walking the returned type. This is a bit hacky as it requires a mapping between the substs on the path in hir, and the generics of the `type Alias<...>` which is on the ty layer. Alternative solutions may involve calculating the "late boundness" of lifetimes after/during astconv rather than relying on hir at all. We already have code to determine whether a lifetime SHOULD be late bound or not as this is currently how the error for `fn foo<'a, T: Trait>(_: Alias<'a, T>) -> &'a ();` gets emitted. It is probably not possible to do this right now, late boundness is used by `generics_of` and `gather_explicit_predicates_of` as we currently do not put late bound lifetimes in `Generics`. Although this seems sus to me as the long term goal is to make all generics late bound which would result in `generics_of(function)` being empty? [rust-lang#103448](rust-lang#103448) places all lifetimes in `Generics` regardless of late boundness so that may be a good step towards making this possible.
…d, r=nikomatsakis avoid making substs of type aliases late bound when used as fn args fixes rust-lang#47511 fixes rust-lang#85533 (although I did not know theses issues existed when i was working on this 🙃) currently `Alias<...>` is treated the same as `Struct<...>` when deciding if generics should be late bound or early bound but this is not correct as `Alias` might normalize to a projection which does not constrain the generics. I think this needs more tests before merging more explanation of PR [here](https://hackmd.io/v44a-QVjTIqqhK9uretyQg?view) Hackmd inline for future readers: --- This assumes reader is familiar with the concept of early/late bound lifetimes. There's a section on rustc-dev-guide if not (although i think some details are a bit out of date) ## problem & background Not all lifetimes on a fn can be late bound: ```rust fn foo<'a>() -> &'a (); impl<'a> Fn<()> for FooFnDef { type Output = &'a (); // uh oh unconstrained lifetime } ``` so we make make them early bound ```rust fn foo<'a>() -> &'a (); impl<'a> Fn<()> for FooFnDef<'a> {// wow look at all that lifetimey type Output = &'a (); } ``` (Closures have the same constraint however it is not enforced leading to soundness bugs, [rust-lang#84385](rust-lang#84385) implements this "downgrading late bound to early bound" for closures) lifetimes on fn items are only late bound when they are "constrained" by the fn args: ```rust fn foo<'a>(_: &'a ()) -> &'a (); // late bound, not present on `FooFnItem` // vv impl<'a> Trait<(&'a (),)> for FooFnItem { type Output = &'a (); } // projections do not constrain inputs fn bar<'a, T: Trait>(_: <T as Trait<'a>>::Assoc) -> &'a (); // early bound // vv impl<'a, T: Trait> Fn<(<T as Trait<'a>>::Assoc,)> for BarFnItem<'a, T> { type Output = &'a (); } ``` current logic for determining if inputs "constrain" a lifetime works off of HIR so does not normalize aliases. It also assumes that any path with no self type constrains all its substs (i.e. `Foo<'a, u32>` has no self type but `T::Assoc` does). This falls apart for top level type aliases (see linked issues): ```rust type Alias<'a, T> = <T as Trait<'a>>::Assoc; // wow look its a path with no self type uwu // i bet that constrains `'a` so it should be latebound // vvvvvvvvvvv fn foo<'a, T: Trait>(_: Alias<'a, T>) -> &'a (); // `Alias` normalized to make things clearer // vvvvvvvvvvvvvvvvvvvvvvv impl<'a, T: Trait> Fn<(<T as Trait<'a>>::Assoc,)> for FooFnDef<T> { type Output = &'a (); // oh no `'a` isnt constrained wah wah waaaah *trumbone noises* // i think, idk what musical instrument that is } ``` ## solution The PR solves this by having the hir visitor that checks for lifetimes in constraining uses check if the path is a `DefKind::Alias`. If it is we ""normalize"" it by calling `type_of` and walking the returned type. This is a bit hacky as it requires a mapping between the substs on the path in hir, and the generics of the `type Alias<...>` which is on the ty layer. Alternative solutions may involve calculating the "late boundness" of lifetimes after/during astconv rather than relying on hir at all. We already have code to determine whether a lifetime SHOULD be late bound or not as this is currently how the error for `fn foo<'a, T: Trait>(_: Alias<'a, T>) -> &'a ();` gets emitted. It is probably not possible to do this right now, late boundness is used by `generics_of` and `gather_explicit_predicates_of` as we currently do not put late bound lifetimes in `Generics`. Although this seems sus to me as the long term goal is to make all generics late bound which would result in `generics_of(function)` being empty? [rust-lang#103448](rust-lang#103448) places all lifetimes in `Generics` regardless of late boundness so that may be a good step towards making this possible.
|
r? types |
|
we should probably land
in a separate PR so we can sign off on it there in parallel to reviewing this PR. |
Marking it as blocked on this, also note that that pr linked above has been closed |
|
We discussed this in the types team planning meeting today (https://rust-lang.zulipchat.com/#narrow/stream/326132-t-types.2Fmeetings/topic/2023-07-03.20planning.20meeting/near/372029871). We decided we'd like to have two deep dives related to this. First, a background on early/late lifetime distinctions, and second, a proposal on this change (or similar). Going to unnominate for now, but we should definitely come back to this during the second deep dive. |
|
blocked on rust-lang/types-team#62, unnominating |
Currently, functions have two kinds of lifetime parameters: early-bound (which appear in where clauses or do not appear in inputs), and late-bound. Late-bound lifetimes do not appear in generics, they only exist inside the function signature. For instance, take this code:
Then we have
generics_of(foo) = ['b, T]andfn_sig(foo::<'b, T>) = for<'a> fn().This PR proposes to make all lifetimes on functions early-bound.
The main motivation is to simplify RPIT and async desugaring, to be submitted as a separate PR (#103449).
To achieve that, all lifetimes are included when constructing
generics_of. The early vs late distinction is still saved inGenericParamDefKind::Lifetime. Thefn_sigquery no longer returns an higher-rankedfntype, but afntype with all lifetimes early-bound. The higher-ranked version is computed byTy::fn_sigfunction by rebinding lifetimes based onGenericParamDefKind::Lifetime. The implicit decay fromFnDefto higher-rankedfnis handled in type coercion.This PR has to work around some the former difference in treatment between early- and late-bound lifetimes. Notably, changing the amount of late-bound lifetimes between trait and impl is allowed.
This makes the current API around rebasing substs an impl to a trait a bit of a footgun. I shifted the late-bound lifetimes to the end of the generics to mitigate the impact. This may cause a issues with RPITIT, except if we disallow such liberties with RPITIT.
To simplify the implementation, I also make
late_bound_lifetime_argumentslint (#42868) a hard error. That lint has been there for 5 years.There are still a few edges to sand off here. I'll file an MCP depending on reception by the types team.
Still TODO:
rebase_ontoAPI.r? types